Modeling relationships between retail prices and consumer reviews: A machine discovery approach and comprehensive evaluations

价(化学) 计算机科学 情感(语言学) 计量经济学 认知 数据科学 营销 机器学习 业务 经济 心理学 沟通 量子力学 物理 神经科学
作者
Xian Yang,Yang Gao,Jiangning Wu,Yanzhong Dang,Weiguo Fan
出处
期刊:Decision Support Systems [Elsevier]
卷期号:145: 113536-113536 被引量:10
标识
DOI:10.1016/j.dss.2021.113536
摘要

Setting the retail price as a part of marketing would affect customers' cognition regarding products and affect their post-purchase behavior of review writing. To deeply understand the relationships between retail prices and reviews, this paper designs an intelligent data-driven Generate/Test Cycle using a machine learning technique to automatically discover the relationship model from a huge amount of data without a prior hypothesis. From a unique dataset, various free-form relationship models with their own structures and parameters have been discovered. By the comprehensive evaluations of candidate models, a guided map was offered to understand the relationship between dynamic retail prices and the volume/valence of reviews for different types of products. Experimental results show that 37.69% of products in our sample exhibit the following trend: When the price is increased to a certain level, the volume of reviews shifts from a decreasing trend to an increasing trend. Results also demonstrate that a linearly increasing relationship model between prices and the valence of reviews is more suitable for the low-involvement products than for the high-involvement products. In addition to the new findings, this research provides a powerful tool to assist domain experts in building relationship models for decision making in a highly efficient manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桑榆完成签到,获得积分10
1秒前
1秒前
123554完成签到 ,获得积分10
2秒前
不胜寒完成签到,获得积分10
3秒前
nicebro完成签到,获得积分10
5秒前
wow完成签到,获得积分10
6秒前
无极微光应助茜茜采纳,获得20
7秒前
ahengo完成签到,获得积分10
8秒前
11发布了新的文献求助10
8秒前
木又发布了新的文献求助10
9秒前
后陡门小学生完成签到 ,获得积分10
10秒前
11秒前
英俊的铭应助zzzz采纳,获得10
12秒前
123发布了新的文献求助10
12秒前
等风、也等你完成签到,获得积分10
12秒前
12秒前
12秒前
灵巧的念柏完成签到,获得积分10
13秒前
13秒前
chen应助稳重的泽洋采纳,获得10
14秒前
15秒前
15秒前
16秒前
nnnd77发布了新的文献求助30
16秒前
16秒前
17秒前
levitt233完成签到 ,获得积分10
18秒前
王文王发布了新的文献求助10
18秒前
小璃发布了新的文献求助10
19秒前
鱼虾一整碗关注了科研通微信公众号
19秒前
欢呼的井发布了新的文献求助10
20秒前
515发布了新的文献求助10
21秒前
善学以致用应助飞天猫采纳,获得10
22秒前
MCst发布了新的文献求助10
22秒前
醉熏的幻莲完成签到 ,获得积分10
23秒前
23秒前
25秒前
25秒前
pierniao完成签到,获得积分10
28秒前
CipherSage应助515采纳,获得10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457785
求助须知:如何正确求助?哪些是违规求助? 4564032
关于积分的说明 14293222
捐赠科研通 4488797
什么是DOI,文献DOI怎么找? 2458721
邀请新用户注册赠送积分活动 1448658
关于科研通互助平台的介绍 1424355