Fault Diagnosis Method of DC Charging Points for EVs Based on Deep Belief Network

断层(地质) 深信不疑网络 人工神经网络 计算机科学 反向传播 人工智能 特征提取 模式识别(心理学) 趋同(经济学) 支持向量机 卷积神经网络 特征(语言学) 非线性系统 算法 物理 地质学 哲学 量子力学 经济增长 经济 地震学 语言学
作者
Dexin Gao,Xihao Lin
出处
期刊:World Electric Vehicle Journal [MDPI AG]
卷期号:12 (1): 47-47 被引量:8
标识
DOI:10.3390/wevj12010047
摘要

According to the complex fault mechanism of direct current (DC) charging points for electric vehicles (EVs) and the poor application effect of traditional fault diagnosis methods, a new kind of fault diagnosis method for DC charging points for EVs based on deep belief network (DBN) is proposed, which combines the advantages of DBN in feature extraction and processing nonlinear data. This method utilizes the actual measurement data of the charging points to realize the unsupervised feature extraction and parameter fine-tuning of the network, and builds the deep network model to complete the accurate fault diagnosis of the charging points. The effectiveness of this method is examined by comparing with the backpropagation neural network, radial basis function neural network, support vector machine, and convolutional neural network in terms of accuracy and model convergence time. The experimental results prove that the proposed method has a higher fault diagnosis accuracy than the above fault diagnosis methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
风雨1210发布了新的文献求助10
1秒前
文艺书雪完成签到 ,获得积分10
1秒前
独行侠完成签到,获得积分10
1秒前
2秒前
我测你码发布了新的文献求助10
2秒前
又要起名字完成签到,获得积分10
2秒前
2秒前
2秒前
damian完成签到,获得积分10
3秒前
LiShin发布了新的文献求助10
3秒前
渝州人应助凤凰山采纳,获得10
4秒前
sweetbearm应助凤凰山采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
yizhiGao应助科研通管家采纳,获得10
4秒前
华仔应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
顾矜应助随机起的名采纳,获得10
4秒前
NN应助科研通管家采纳,获得10
4秒前
pinging应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
yizhiGao应助科研通管家采纳,获得10
5秒前
小蘑菇应助科研通管家采纳,获得20
5秒前
小小旋风应助科研通管家采纳,获得10
5秒前
传奇3应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
敬老院N号应助科研通管家采纳,获得30
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
彭于晏应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
yizhiGao应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
科研小白应助科研通管家采纳,获得10
6秒前
李爱国应助科研通管家采纳,获得10
6秒前
文献缺缺应助科研通管家采纳,获得10
6秒前
上官若男应助科研通管家采纳,获得10
6秒前
6秒前
调研昵称发布了新的文献求助10
6秒前
6秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794