亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Calibration of the Microparameters of Rock Specimens by Using Various Machine Learning Algorithms

支持向量机 随机森林 校准 算法 回归 人工智能 回归分析 机器学习 计算机科学 数学 数据挖掘 统计
作者
Chen Xu,Xiaoli Liu,Enzhi Wang,Sijing Wang
出处
期刊:International Journal of Geomechanics [American Society of Civil Engineers]
卷期号:21 (5) 被引量:17
标识
DOI:10.1061/(asce)gm.1943-5622.0001977
摘要

High accuracy in the simulation of the discrete-element method (DEM) depends on the proper selection of microparameters. In this study, the range of microparameters was determined through sensitivity analysis. Subsequently, four levels of orthogonal experimental tables were established and 148 sets of data were collected. In addition, five data mining methods, namely, support vector regression (SVR), nearest-neighbor regression (NNR), Bayesian ridge regression (BRR), random forest regression (RFR), and gradient tree boosting regression (GTBR), were used to establish a microparameter prediction model. The results indicate that machine learning methods have significant potential in determining the relationship between macro and microparameters of the DEM model. RFR achieved the best performance among the five models whether the input data were collected from the tests of the Brazilian tensile strength and uniaxial compression or only the uniaxial compression test. In addition, the deviation between the predicted and measured macroparameters was less than 8%. This approach allowed for more accurate modeling of complex structures in a rock under various stress conditions through DEM simulations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
陳.发布了新的文献求助10
9秒前
不能随便完成签到,获得积分10
18秒前
93完成签到,获得积分10
19秒前
今后应助Yuanyuan采纳,获得10
24秒前
26秒前
ucjudgo完成签到,获得积分10
27秒前
31秒前
您疼肚完成签到,获得积分20
32秒前
易如反掌发布了新的文献求助10
34秒前
彭浩发布了新的文献求助10
38秒前
情怀应助科研通管家采纳,获得10
42秒前
46秒前
聂青枫完成签到,获得积分10
51秒前
58秒前
好香芋泥煎意面完成签到,获得积分10
1分钟前
1分钟前
DD应助one采纳,获得10
1分钟前
开心初阳发布了新的文献求助10
1分钟前
华鹊鹊发布了新的文献求助10
1分钟前
由道罡完成签到 ,获得积分10
1分钟前
易如反掌完成签到,获得积分20
1分钟前
爆米花应助Yuanyuan采纳,获得10
1分钟前
情怀应助华鹊鹊采纳,获得10
1分钟前
1分钟前
1分钟前
清风明月完成签到 ,获得积分10
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
科研通AI6应助山渐青采纳,获得10
1分钟前
虚心的小蝴蝶完成签到 ,获得积分10
1分钟前
roro熊完成签到 ,获得积分10
1分钟前
斯文败类应助薛建伟采纳,获得10
1分钟前
1分钟前
1分钟前
zz发布了新的文献求助10
1分钟前
1分钟前
薛建伟完成签到,获得积分10
1分钟前
汉堡包应助Mavis采纳,获得10
1分钟前
薛建伟发布了新的文献求助10
1分钟前
小毛完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561327
求助须知:如何正确求助?哪些是违规求助? 4646482
关于积分的说明 14678530
捐赠科研通 4587784
什么是DOI,文献DOI怎么找? 2517212
邀请新用户注册赠送积分活动 1490496
关于科研通互助平台的介绍 1461362