Risk early warning of food safety using novel long short-term memory neural network integrating sum product based analytic hierarchy process

层次分析法 计算机科学 预警系统 食品安全 风险分析(工程) 产品(数学) 人工神经网络 风险评估 运筹学 人工智能 业务 工程类 计算机安全 数学 医学 电信 病理 几何学
作者
Zhiqiang Geng,Lingling Liang,Yongming Han,Guangcan Tao,Chong Chu
出处
期刊:British Food Journal [Emerald Publishing Limited]
卷期号:124 (3): 898-914 被引量:19
标识
DOI:10.1108/bfj-04-2021-0367
摘要

Purpose Food safety risk brought by environmental pollution seriously threatens human health and affects national economic and social development. In particular, heavy metal pollution and nutrient deficiency have caused regional diseases. Thus, the purpose of this paper is to present a risk early warning method of food safety considering environmental and nutritional factors. Design/methodology/approach A novel risk early warning modelling method based on the long short-term memory (LSTM) neural network integrating sum product based analytic hierarchy process (AHP-SP) is proposed. The data fuzzification method is adopted to overcome the uncertainty of food safety detection data and the processed data are viewed as the input of the LSTM. The AHP-SP method is used to fuse the risk of detection data and the obtained risk values are viewed as the expected output of the LSTM. Finally, the proposed method is applied on one group of sterilized milk data from a food detection agency in China. Findings The experimental results show that compared with the back propagation and the radial basis function neural networks, the proposed method has higher accuracy in predicting the development trend of food safety risk. Moreover, the causal factors of the risk can be figured out through the predicted results. Originality/value The proposed modelling method can achieve accurate prediction and early warning of food safety risk, and provide decision-making basis for the relevant departments to formulate targeted risk prevention and control measures, thereby avoiding food safety incidents caused by environmental pollution or nutritional deficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浅辰完成签到 ,获得积分10
1秒前
bkagyin应助sxd采纳,获得10
1秒前
Leif举报681求助涉嫌违规
2秒前
3秒前
3秒前
viyou完成签到,获得积分10
5秒前
三颗板牙完成签到,获得积分10
5秒前
阿冷发布了新的文献求助10
5秒前
8秒前
Zephr发布了新的文献求助10
8秒前
谜记完成签到,获得积分10
9秒前
艾瑞克完成签到,获得积分10
9秒前
GT完成签到,获得积分10
9秒前
Jayzie完成签到 ,获得积分10
10秒前
飞飞完成签到,获得积分10
11秒前
陶醉书包完成签到 ,获得积分10
12秒前
苏恩发布了新的文献求助50
13秒前
搞怪哑铃完成签到,获得积分10
13秒前
妇产科医生完成签到 ,获得积分10
14秒前
jhlz5879完成签到,获得积分10
14秒前
15秒前
16秒前
suliang完成签到,获得积分10
16秒前
安静一曲完成签到 ,获得积分10
18秒前
淡定的天空完成签到,获得积分10
19秒前
21秒前
w婷完成签到 ,获得积分10
22秒前
22秒前
科研通AI5应助张文采纳,获得10
23秒前
Graham完成签到,获得积分10
24秒前
寒冷的机器猫完成签到,获得积分10
26秒前
苏恩完成签到 ,获得积分10
27秒前
bingchem发布了新的文献求助30
27秒前
英俊的铭应助整齐的曼安采纳,获得10
27秒前
晚意意意意意完成签到 ,获得积分10
28秒前
圣诞节完成签到,获得积分10
30秒前
风趣秋白完成签到,获得积分10
30秒前
标致的泥猴桃完成签到,获得积分10
31秒前
thisky完成签到,获得积分10
32秒前
半岛完成签到,获得积分10
33秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3736805
求助须知:如何正确求助?哪些是违规求助? 3280699
关于积分的说明 10020699
捐赠科研通 2997414
什么是DOI,文献DOI怎么找? 1644554
邀请新用户注册赠送积分活动 782083
科研通“疑难数据库(出版商)”最低求助积分说明 749668