拟南芥
染色质免疫沉淀
生物
光敏色素
遗传学
转录因子
拟南芥
远红色
发起人
基因组
基因
微阵列分析技术
细胞生物学
突变体
基因表达
植物
红灯
作者
Xinhao Ouyang,Jigang Li,Gang Li,Bosheng Li,Beibei Chen,Huangxuan Shen,Xi Huang,Xiaoning Mo,Xiangyuan Wan,Rongcheng Lin,Shigui Li,Haiyang Wang,Xing Wang Deng
出处
期刊:The Plant Cell
[Oxford University Press]
日期:2011-07-01
卷期号:23 (7): 2514-2535
被引量:123
标识
DOI:10.1105/tpc.111.085126
摘要
FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and its homolog FAR-RED IMPAIRED RESPONSE1 (FAR1), two transposase-derived transcription factors, are key components in phytochrome A signaling and the circadian clock. Here, we use chromatin immunoprecipitation–based sequencing (ChIP-seq) to identify 1559 and 1009 FHY3 direct target genes in darkness (D) and far-red (FR) light conditions, respectively, in the Arabidopsis thaliana genome. FHY3 preferentially binds to promoters through the FHY3/FAR1 binding motif (CACGCGC). Interestingly, FHY3 also binds to two motifs in the 178-bp Arabidopsis centromeric repeats. Comparison between the ChIP-seq and microarray data indicates that FHY3 quickly regulates the expression of 197 and 86 genes in D and FR, respectively. FHY3 also coregulates a number of common target genes with PHYTOCHROME INTERACTING FACTOR 3-LIKE5 and ELONGATED HYPOCOTYL5. Moreover, we uncover a role for FHY3 in controlling chloroplast development by directly activating the expression of ACCUMULATION AND REPLICATION OF CHLOROPLASTS5, whose product is a structural component of the latter stages of chloroplast division in Arabidopsis. Taken together, our data suggest that FHY3 regulates multiple facets of plant development, thus providing insights into its functions beyond light and circadian pathways.
科研通智能强力驱动
Strongly Powered by AbleSci AI