Trials and tribulations of ‘omics data analysis: assessing quality of SIMCA-based multivariate models using examples from pulmonary medicine

单变量 假阳性悖论 组学 错误发现率 多元统计 邦费罗尼校正 计算机科学 预处理器 规范化(社会学) 数据挖掘 贝叶斯概率 多重比较问题 计数数据 统计 生物信息学 机器学习 人工智能 数学 生物 泊松分布 生物化学 社会学 基因 人类学
作者
Åsa M. Wheelock,Craig E. Wheelock
出处
期刊:Molecular BioSystems [The Royal Society of Chemistry]
卷期号:9 (11): 2589-2589 被引量:288
标识
DOI:10.1039/c3mb70194h
摘要

Respiratory diseases are multifactorial heterogeneous diseases that have proved recalcitrant to understanding using focused molecular techniques. This trend has led to the rise of 'omics approaches (e.g., transcriptomics, proteomics) and subsequent acquisition of large-scale datasets consisting of multiple variables. In 'omics technology-based investigations, discrepancies between the number of variables analyzed (e.g., mRNA, proteins, metabolites) and the number of study subjects constitutes a major statistical challenge. The application of traditional univariate statistical methods (e.g., t-test) to these "short-and-wide" datasets may result in high numbers of false positives, while the predominant approach of p-value correction to account for these high false positive rates (e.g., FDR, Bonferroni) are associated with significant losses in statistical power. In other words, the benefit in decreased false positives must be counterbalanced with a concomitant loss in true positives. As an alternative, multivariate statistical analysis (MVA) is increasingly being employed to cope with 'omics-based data structures. When properly applied, MVA approaches can be powerful tools for integration and interpretation of complex 'omics-based datasets towards the goal of identifying biomarkers and/or subphenotypes. However, MVA methods are also prone to over-interpretation and misuse. A common software used in biomedical research to perform MVA-based analyses is the SIMCA package, which includes multiple MVA methods. In this opinion piece, we propose guidelines for minimum reporting standards for a SIMCA-based workflow, in terms of data preprocessing (e.g., normalization, scaling) and model statistics (number of components, R2, Q2, and CV-ANOVA p-value). Examples of these applications in recent COPD and asthma studies are provided. It is expected that readers will gain an increased understanding of the power and utility of MVA methods for applications in biomedical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
akber123完成签到,获得积分10
1秒前
漂彭完成签到,获得积分10
1秒前
2秒前
2秒前
小二郎应助Bab采纳,获得10
2秒前
4秒前
ddd关闭了ddd文献求助
4秒前
田様应助虚幻忆南采纳,获得10
4秒前
4秒前
远山笑你发布了新的文献求助100
6秒前
神说应助朴素千亦采纳,获得10
6秒前
7秒前
亦犹未进发布了新的文献求助10
7秒前
7秒前
暴躁平底锅完成签到,获得积分10
8秒前
li发布了新的文献求助10
8秒前
9秒前
木茗完成签到,获得积分20
10秒前
李爱国应助窗外风雨阑珊采纳,获得10
10秒前
连冷安完成签到,获得积分10
10秒前
闪闪秋凌完成签到 ,获得积分10
10秒前
清爽达完成签到 ,获得积分10
11秒前
大蟋蟀发布了新的文献求助10
11秒前
12秒前
12秒前
细心镜子发布了新的文献求助10
12秒前
所所应助尊敬的迎松采纳,获得10
13秒前
申aobo完成签到,获得积分10
13秒前
14秒前
Ying发布了新的文献求助20
15秒前
磷酸果糖完成签到,获得积分10
15秒前
15秒前
luchong发布了新的文献求助30
15秒前
睿智番茄完成签到,获得积分20
16秒前
小废完成签到,获得积分20
16秒前
16秒前
17秒前
汉堡包应助飞秒激光啊采纳,获得10
17秒前
ting发布了新的文献求助30
17秒前
伍齊完成签到,获得积分10
18秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305838
求助须知:如何正确求助?哪些是违规求助? 2939636
关于积分的说明 8494019
捐赠科研通 2613958
什么是DOI,文献DOI怎么找? 1427800
科研通“疑难数据库(出版商)”最低求助积分说明 663191
邀请新用户注册赠送积分活动 647988