Distributionally Robust Stochastic Optimization with Wasserstein Distance

数学 稳健优化 数学优化 概率分布 最优化问题 集合(抽象数据类型) 对偶(序理论) 分布(数学) 随机优化 口译(哲学) 计算机科学 组合数学 统计 数学分析 程序设计语言
作者
Rui Gao,Anton J. Kleywegt
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
卷期号:48 (2): 603-655 被引量:438
标识
DOI:10.1287/moor.2022.1275
摘要

Distributionally robust stochastic optimization (DRSO) is an approach to optimization under uncertainty in which, instead of assuming that there is a known true underlying probability distribution, one hedges against a chosen set of distributions. In this paper, we first point out that the set of distributions should be chosen to be appropriate for the application at hand and some of the choices that have been popular until recently are, for many applications, not good choices. We next consider sets of distributions that are within a chosen Wasserstein distance from a nominal distribution. Such a choice of sets has two advantages: (1) The resulting distributions hedged against are more reasonable than those resulting from other popular choices of sets. (2) The problem of determining the worst-case expectation over the resulting set of distributions has desirable tractability properties. We derive a strong duality reformulation of the corresponding DRSO problem and construct approximate worst-case distributions (or an exact worst-case distribution if it exists) explicitly via the first-order optimality conditions of the dual problem. Our contributions are fourfold. (i) We identify necessary and sufficient conditions for the existence of a worst-case distribution, which are naturally related to the growth rate of the objective function. (ii) We show that the worst-case distributions resulting from an appropriate Wasserstein distance have a concise structure and a clear interpretation. (iii) Using this structure, we show that data-driven DRSO problems can be approximated to any accuracy by robust optimization problems, and thereby many DRSO problems become tractable by using tools from robust optimization. (iv) Our strong duality result holds in a very general setting. As examples, we show that it can be applied to infinite dimensional process control and intensity estimation for point processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
x笑一完成签到,获得积分10
1秒前
现代雪柳完成签到,获得积分10
2秒前
善学以致用应助DuanShanNan采纳,获得10
5秒前
现代雪柳发布了新的文献求助10
6秒前
充电宝应助沐mu采纳,获得10
7秒前
桐桐应助MWY采纳,获得10
7秒前
百里守约完成签到 ,获得积分10
7秒前
夏天呀完成签到,获得积分10
7秒前
万能图书馆应助ying采纳,获得10
8秒前
FFFFcom完成签到,获得积分10
9秒前
9秒前
小马甲应助无私的以云采纳,获得10
9秒前
科研通AI2S应助壮观以松采纳,获得10
10秒前
11秒前
jrzsy完成签到,获得积分10
12秒前
12秒前
大方兔子发布了新的文献求助10
13秒前
DuanShanNan完成签到,获得积分20
14秒前
wuxiaochen发布了新的文献求助10
15秒前
16秒前
Owen应助爱吃香菜采纳,获得10
17秒前
DuanShanNan发布了新的文献求助10
18秒前
多多发布了新的文献求助10
20秒前
p454q完成签到 ,获得积分10
20秒前
20秒前
量子星尘发布了新的文献求助30
22秒前
良言完成签到 ,获得积分10
24秒前
24秒前
jenningseastera应助z1z1z采纳,获得20
25秒前
张豪英关注了科研通微信公众号
26秒前
jrzsy关注了科研通微信公众号
26秒前
zhh完成签到,获得积分10
26秒前
萝卜完成签到,获得积分10
31秒前
31秒前
超帅破茧发布了新的文献求助10
31秒前
何hyy完成签到,获得积分10
33秒前
热心市民小红花应助mawenyu采纳,获得10
33秒前
华仔应助淡然的大碗采纳,获得10
34秒前
夏沫完成签到,获得积分10
37秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959257
求助须知:如何正确求助?哪些是违规求助? 3505580
关于积分的说明 11124544
捐赠科研通 3237326
什么是DOI,文献DOI怎么找? 1789102
邀请新用户注册赠送积分活动 871526
科研通“疑难数据库(出版商)”最低求助积分说明 802844