Distributionally Robust Stochastic Optimization with Wasserstein Distance

数学 稳健优化 数学优化 概率分布 最优化问题 集合(抽象数据类型) 对偶(序理论) 分布(数学) 随机优化 口译(哲学) 计算机科学 组合数学 统计 数学分析 程序设计语言
作者
Rui Gao,Anton J. Kleywegt
出处
期刊:Mathematics of Operations Research [Institute for Operations Research and the Management Sciences]
卷期号:48 (2): 603-655 被引量:385
标识
DOI:10.1287/moor.2022.1275
摘要

Distributionally robust stochastic optimization (DRSO) is an approach to optimization under uncertainty in which, instead of assuming that there is a known true underlying probability distribution, one hedges against a chosen set of distributions. In this paper, we first point out that the set of distributions should be chosen to be appropriate for the application at hand and some of the choices that have been popular until recently are, for many applications, not good choices. We next consider sets of distributions that are within a chosen Wasserstein distance from a nominal distribution. Such a choice of sets has two advantages: (1) The resulting distributions hedged against are more reasonable than those resulting from other popular choices of sets. (2) The problem of determining the worst-case expectation over the resulting set of distributions has desirable tractability properties. We derive a strong duality reformulation of the corresponding DRSO problem and construct approximate worst-case distributions (or an exact worst-case distribution if it exists) explicitly via the first-order optimality conditions of the dual problem. Our contributions are fourfold. (i) We identify necessary and sufficient conditions for the existence of a worst-case distribution, which are naturally related to the growth rate of the objective function. (ii) We show that the worst-case distributions resulting from an appropriate Wasserstein distance have a concise structure and a clear interpretation. (iii) Using this structure, we show that data-driven DRSO problems can be approximated to any accuracy by robust optimization problems, and thereby many DRSO problems become tractable by using tools from robust optimization. (iv) Our strong duality result holds in a very general setting. As examples, we show that it can be applied to infinite dimensional process control and intensity estimation for point processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddsyg126完成签到,获得积分10
刚刚
Silence发布了新的文献求助10
刚刚
隐形衬衫完成签到 ,获得积分10
刚刚
刚刚
骆十八完成签到,获得积分10
2秒前
粗心的含莲应助22采纳,获得10
2秒前
wh1t3zZ发布了新的文献求助10
3秒前
IceyMY发布了新的文献求助10
4秒前
科目三应助难过的采柳采纳,获得10
4秒前
李大仁完成签到,获得积分10
4秒前
5秒前
科研通AI2S应助高兴棉花糖采纳,获得10
6秒前
6秒前
Burnell完成签到,获得积分20
6秒前
whs完成签到,获得积分10
6秒前
7秒前
anan完成签到 ,获得积分10
8秒前
9秒前
9秒前
成就的棒棒糖完成签到,获得积分10
10秒前
10秒前
10秒前
快乐青丝发布了新的文献求助10
11秒前
我来也发布了新的文献求助10
12秒前
12秒前
朝暮完成签到,获得积分10
13秒前
最好完成签到 ,获得积分10
13秒前
烟花应助吃吃货采纳,获得10
15秒前
果冻心完成签到,获得积分10
15秒前
JMrider完成签到,获得积分10
15秒前
夜願发布了新的文献求助10
15秒前
zhouyi发布了新的文献求助10
16秒前
17秒前
我来也完成签到,获得积分10
18秒前
彭于晏应助李铮采纳,获得10
18秒前
饼大王完成签到,获得积分10
19秒前
zq发布了新的文献求助10
19秒前
20秒前
20秒前
英姑应助怕孤单的书包采纳,获得10
20秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
SIS-ISO/IEC TS 27100:2024 Information technology — Cybersecurity — Overview and concepts (ISO/IEC TS 27100:2020, IDT)(Swedish Standard) 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233151
求助须知:如何正确求助?哪些是违规求助? 2879802
关于积分的说明 8212729
捐赠科研通 2547256
什么是DOI,文献DOI怎么找? 1376693
科研通“疑难数据库(出版商)”最低求助积分说明 647682
邀请新用户注册赠送积分活动 623073