A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

抗生素 肺炎球菌肺炎 肺炎链球菌 肺炎 人口 免疫学 肺炎球菌感染 医学 免疫系统 生物 微生物学 内科学 环境卫生
作者
Sibylle Schirm,Peter Ahnert,Sandra-Maria Wienhold,Holger Mueller-Redetzky,Geraldine Nouailles,Markus Loeffler,Martin Witzenrath,Markus Scholz
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (5): e0156047-e0156047 被引量:22
标识
DOI:10.1371/journal.pone.0156047
摘要

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaobai123456发布了新的文献求助10
刚刚
科研通AI6.1应助小李子采纳,获得10
刚刚
my123发布了新的文献求助10
1秒前
LZW发布了新的文献求助10
1秒前
1秒前
1秒前
老黑完成签到 ,获得积分10
1秒前
1秒前
ZetianYang完成签到,获得积分10
1秒前
Wenqi发布了新的文献求助30
2秒前
昏睡的砖家完成签到,获得积分10
2秒前
2秒前
王燕峰完成签到,获得积分10
3秒前
Min发布了新的文献求助10
3秒前
骄傲yy发布了新的文献求助10
3秒前
3秒前
苦酷完成签到,获得积分10
3秒前
Chipper发布了新的文献求助10
4秒前
4秒前
我是老大应助开朗的宝川采纳,获得10
4秒前
li完成签到,获得积分10
4秒前
无花果应助lidan_2008采纳,获得10
5秒前
代桃完成签到,获得积分10
5秒前
5秒前
saefduo发布了新的文献求助10
5秒前
5秒前
ss发布了新的文献求助10
5秒前
科研通AI2S应助NING采纳,获得10
5秒前
6秒前
mia发布了新的文献求助10
6秒前
怡然缘分完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
XQ发布了新的文献求助10
6秒前
干净冰露完成签到,获得积分10
6秒前
zyx发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
无极微光应助xyu采纳,获得20
7秒前
今后应助时织梦采纳,获得10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5759349
求助须知:如何正确求助?哪些是违规求助? 5519823
关于积分的说明 15393808
捐赠科研通 4896421
什么是DOI,文献DOI怎么找? 2633690
邀请新用户注册赠送积分活动 1581712
关于科研通互助平台的介绍 1537250