A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

抗生素 肺炎球菌肺炎 肺炎链球菌 肺炎 人口 免疫学 肺炎球菌感染 医学 免疫系统 生物 微生物学 内科学 环境卫生
作者
Sibylle Schirm,Peter Ahnert,Sandra-Maria Wienhold,Holger Mueller-Redetzky,Geraldine Nouailles,Markus Loeffler,Martin Witzenrath,Markus Scholz
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (5): e0156047-e0156047 被引量:22
标识
DOI:10.1371/journal.pone.0156047
摘要

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大个应助Wangdx采纳,获得10
1秒前
柒月完成签到 ,获得积分10
1秒前
1秒前
1秒前
任性雍发布了新的文献求助10
2秒前
2秒前
尹小末发布了新的文献求助10
3秒前
3秒前
顾矜应助风中的小松鼠采纳,获得10
3秒前
MitsubaAoki完成签到,获得积分10
4秒前
田様应助幽默厉采纳,获得10
4秒前
116发布了新的文献求助10
5秒前
mira完成签到,获得积分10
5秒前
彼得应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得10
5秒前
深情安青应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
6秒前
科研通AI6应助科研通管家采纳,获得10
6秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
6秒前
F_echo应助科研通管家采纳,获得20
6秒前
凝眸处应助科研通管家采纳,获得10
6秒前
科目三应助科研通管家采纳,获得10
6秒前
在水一方应助科研通管家采纳,获得10
6秒前
6秒前
彼得应助科研通管家采纳,获得10
6秒前
日照金峰发布了新的文献求助10
6秒前
6秒前
wangguoxi应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
叫我小可爱完成签到,获得积分10
6秒前
浮游应助科研通管家采纳,获得10
6秒前
刻刻发布了新的文献求助10
6秒前
Zx_1993应助科研通管家采纳,获得10
6秒前
充电宝应助科研通管家采纳,获得10
7秒前
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5506056
求助须知:如何正确求助?哪些是违规求助? 4601542
关于积分的说明 14477374
捐赠科研通 4535544
什么是DOI,文献DOI怎么找? 2485440
邀请新用户注册赠送积分活动 1468399
关于科研通互助平台的介绍 1440887