A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

抗生素 肺炎球菌肺炎 肺炎链球菌 肺炎 人口 免疫学 肺炎球菌感染 医学 免疫系统 生物 微生物学 内科学 环境卫生
作者
Sibylle Schirm,Peter Ahnert,Sandra-Maria Wienhold,Holger Mueller-Redetzky,Geraldine Nouailles,Markus Loeffler,Martin Witzenrath,Markus Scholz
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (5): e0156047-e0156047 被引量:22
标识
DOI:10.1371/journal.pone.0156047
摘要

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kai发布了新的文献求助30
1秒前
2秒前
2秒前
2秒前
3秒前
山生有杏发布了新的文献求助20
4秒前
Dsweet发布了新的文献求助10
5秒前
6秒前
Weining发布了新的文献求助10
6秒前
6秒前
高贵的海安完成签到,获得积分10
6秒前
长期不想取网名完成签到,获得积分10
7秒前
感动满天发布了新的文献求助10
8秒前
刘YF发布了新的文献求助10
8秒前
8秒前
yye发布了新的文献求助10
9秒前
蒙先生发布了新的文献求助30
9秒前
田様应助zyn采纳,获得10
9秒前
L一年发布了新的文献求助10
10秒前
10秒前
10秒前
李李原上完成签到,获得积分20
12秒前
顾文杰完成签到 ,获得积分10
13秒前
大有阳光应助旺旺采纳,获得10
13秒前
好困应助Dsweet采纳,获得10
14秒前
共享精神应助Dsweet采纳,获得10
14秒前
围城发布了新的文献求助30
14秒前
李李原上发布了新的文献求助10
15秒前
陈军应助星辰采纳,获得20
15秒前
17秒前
犹豫的棒棒糖完成签到,获得积分10
17秒前
17秒前
甜甜玫瑰应助温婉的含芙采纳,获得10
18秒前
iNk应助轩贝采纳,获得20
18秒前
18秒前
吃大肉完成签到,获得积分10
18秒前
cnsnfsafmiima完成签到,获得积分10
19秒前
20秒前
20秒前
lilililili发布了新的文献求助10
20秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156221
求助须知:如何正确求助?哪些是违规求助? 2807720
关于积分的说明 7874164
捐赠科研通 2465918
什么是DOI,文献DOI怎么找? 1312504
科研通“疑难数据库(出版商)”最低求助积分说明 630154
版权声明 601912