A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

抗生素 肺炎球菌肺炎 肺炎链球菌 肺炎 人口 免疫学 肺炎球菌感染 医学 免疫系统 生物 微生物学 内科学 环境卫生
作者
Sibylle Schirm,Peter Ahnert,Sandra-Maria Wienhold,Holger Mueller-Redetzky,Geraldine Nouailles,Markus Loeffler,Martin Witzenrath,Markus Scholz
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (5): e0156047-e0156047 被引量:22
标识
DOI:10.1371/journal.pone.0156047
摘要

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fff发布了新的文献求助10
刚刚
刚刚
CC发布了新的文献求助10
1秒前
eee发布了新的文献求助20
1秒前
HEIKU应助xinxinqi采纳,获得10
2秒前
keroro完成签到,获得积分10
2秒前
研友_VZG7GZ应助宋嬴一采纳,获得10
2秒前
祯果粒完成签到,获得积分10
2秒前
2秒前
王大炮完成签到 ,获得积分10
2秒前
不厌完成签到,获得积分10
3秒前
feifei关注了科研通微信公众号
3秒前
4秒前
香菜完成签到,获得积分20
4秒前
鲸是海蓝色完成签到 ,获得积分10
4秒前
英姑应助xhy采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
6秒前
6秒前
郑开司09发布了新的文献求助10
6秒前
黄紫红蓝发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
8秒前
camera完成签到 ,获得积分20
8秒前
zino发布了新的文献求助10
8秒前
reck发布了新的文献求助10
9秒前
9秒前
苹果追命完成签到,获得积分20
10秒前
10秒前
烟花应助8564523采纳,获得10
10秒前
lkl完成签到 ,获得积分10
10秒前
01259发布了新的文献求助10
11秒前
11秒前
金子完成签到,获得积分10
11秒前
阳光下的星星完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672