A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

抗生素 肺炎球菌肺炎 肺炎链球菌 肺炎 人口 免疫学 肺炎球菌感染 医学 免疫系统 生物 微生物学 内科学 环境卫生
作者
Sibylle Schirm,Peter Ahnert,Sandra-Maria Wienhold,Holger Mueller-Redetzky,Geraldine Nouailles,Markus Loeffler,Martin Witzenrath,Markus Scholz
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (5): e0156047-e0156047 被引量:22
标识
DOI:10.1371/journal.pone.0156047
摘要

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
初柒完成签到,获得积分10
刚刚
向雨竹完成签到,获得积分10
刚刚
wxz1236完成签到 ,获得积分10
1秒前
哈哈哈哈完成签到,获得积分10
1秒前
lpp完成签到,获得积分10
2秒前
小北完成签到,获得积分10
2秒前
Wri发布了新的文献求助10
2秒前
李大锤完成签到,获得积分10
2秒前
123456789完成签到,获得积分10
2秒前
zf发布了新的文献求助10
3秒前
粗心的羽毛关注了科研通微信公众号
3秒前
WW发布了新的文献求助10
3秒前
4秒前
sansan发布了新的文献求助10
4秒前
Luna_aaa发布了新的文献求助10
4秒前
4秒前
luluzheng给JiangSir的求助进行了留言
5秒前
5秒前
八十一分先生完成签到,获得积分10
5秒前
blueblue完成签到,获得积分10
6秒前
英俊的铭应助风中的嚓茶采纳,获得10
6秒前
Licht完成签到,获得积分10
7秒前
阔达苡完成签到,获得积分10
7秒前
zhBian完成签到,获得积分10
7秒前
鲁万仇完成签到,获得积分10
7秒前
蓝荆发布了新的文献求助10
8秒前
自觉的元芹完成签到,获得积分10
8秒前
李健应助愉快的莹采纳,获得10
9秒前
可口可乐发布了新的文献求助10
9秒前
zzzeeee发布了新的文献求助10
9秒前
合适孤兰发布了新的文献求助10
10秒前
如月霖完成签到,获得积分10
10秒前
小寒同学完成签到,获得积分10
10秒前
lllllllulu完成签到,获得积分10
11秒前
11秒前
11秒前
zxy完成签到,获得积分10
12秒前
WWXWWX发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
12秒前
amberbaby完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5699262
求助须知:如何正确求助?哪些是违规求助? 5129994
关于积分的说明 15225198
捐赠科研通 4854268
什么是DOI,文献DOI怎么找? 2604550
邀请新用户注册赠送积分活动 1556014
关于科研通互助平台的介绍 1514297