A Biomathematical Model of Pneumococcal Lung Infection and Antibiotic Treatment in Mice

抗生素 肺炎球菌肺炎 肺炎链球菌 肺炎 人口 免疫学 肺炎球菌感染 医学 免疫系统 生物 微生物学 内科学 环境卫生
作者
Sibylle Schirm,Peter Ahnert,Sandra-Maria Wienhold,Holger Mueller-Redetzky,Geraldine Nouailles,Markus Loeffler,Martin Witzenrath,Markus Scholz
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:11 (5): e0156047-e0156047 被引量:22
标识
DOI:10.1371/journal.pone.0156047
摘要

Pneumonia is considered to be one of the leading causes of death worldwide. The outcome depends on both, proper antibiotic treatment and the effectivity of the immune response of the host. However, due to the complexity of the immunologic cascade initiated during infection, the latter cannot be predicted easily. We construct a biomathematical model of the murine immune response during infection with pneumococcus aiming at predicting the outcome of antibiotic treatment. The model consists of a number of non-linear ordinary differential equations describing dynamics of pneumococcal population, the inflammatory cytokine IL-6, neutrophils and macrophages fighting the infection and destruction of alveolar tissue due to pneumococcus. Equations were derived by translating known biological mechanisms and assuming certain response kinetics. Antibiotic therapy is modelled by a transient depletion of bacteria. Unknown model parameters were determined by fitting the predictions of the model to data sets derived from mice experiments of pneumococcal lung infection with and without antibiotic treatment. Time series of pneumococcal population, debris, neutrophils, activated epithelial cells, macrophages, monocytes and IL-6 serum concentrations were available for this purpose. The antibiotics Ampicillin and Moxifloxacin were considered. Parameter fittings resulted in a good agreement of model and data for all experimental scenarios. Identifiability of parameters is also estimated. The model can be used to predict the performance of alternative schedules of antibiotic treatment. We conclude that we established a biomathematical model of pneumococcal lung infection in mice allowing predictions regarding the outcome of different schedules of antibiotic treatment. We aim at translating the model to the human situation in the near future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
actor2006完成签到,获得积分10
1秒前
zhaxiao完成签到,获得积分10
1秒前
1秒前
希望天下0贩的0应助淘淘采纳,获得10
1秒前
冰火油条虾完成签到,获得积分10
1秒前
陈逸恒发布了新的文献求助10
1秒前
大红完成签到,获得积分10
1秒前
爆米花应助应天亦采纳,获得10
2秒前
善学以致用应助echooooo采纳,获得10
2秒前
墨卿完成签到,获得积分10
2秒前
uraylong发布了新的文献求助10
3秒前
4秒前
达达利亚完成签到,获得积分10
4秒前
111发布了新的文献求助30
4秒前
ponytail完成签到,获得积分10
5秒前
榕小蜂完成签到 ,获得积分10
5秒前
5秒前
6秒前
wdy111应助Mila采纳,获得20
6秒前
hahhh7发布了新的文献求助10
6秒前
6秒前
科研通AI5应助huyuan采纳,获得10
7秒前
冰西瓜完成签到 ,获得积分0
7秒前
酱啊油完成签到,获得积分10
7秒前
charles发布了新的文献求助10
9秒前
LYL2003完成签到,获得积分10
9秒前
1231完成签到,获得积分10
9秒前
10秒前
大气的天蓝完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
白鸢发布了新的文献求助10
11秒前
有趣的灵魂完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
12秒前
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653