MSP-IMPROV: An Acted Corpus of Dyadic Interactions to Study Emotion Perception

自然性 共发音 感知 背景(考古学) 计算机科学 自然语言处理 判决 情感知觉 阅读(过程) 自然(考古学) 心理学 认知心理学 人工智能 面部表情 语音识别 语言学 元音 神经科学 考古 古生物学 哲学 物理 历史 生物 量子力学
作者
Carlos Busso,Srinivas Parthasarathy,Alec Burmania,Mohammed Abdelwahab,Najmeh Sadoughi,Emily Mower Provost
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:8 (1): 67-80 被引量:330
标识
DOI:10.1109/taffc.2016.2515617
摘要

We present the MSP-IMPROV corpus, a multimodal emotional database, where the goal is to have control over lexical content and emotion while also promoting naturalness in the recordings. Studies on emotion perception often require stimuli with fixed lexical content, but that convey different emotions. These stimuli can also serve as an instrument to understand how emotion modulates speech at the phoneme level, in a manner that controls for coarticulation. Such audiovisual data are not easily available from natural recordings. A common solution is to record actors reading sentences that portray different emotions, which may not produce natural behaviors. We propose an alternative approach in which we define hypothetical scenarios for each sentence that are carefully designed to elicit a particular emotion. Two actors improvise these emotion-specific situations, leading them to utter contextualized, non-read renditions of sentences that have fixed lexical content and convey different emotions. We describe the context in which this corpus was recorded, the key features of the corpus, the areas in which this corpus can be useful, and the emotional content of the recordings. The paper also provides the performance for speech and facial emotion classifiers. The analysis brings novel classification evaluations where we study the performance in terms of inter-evaluator agreement and naturalness perception, leveraging the large size of the audiovisual database.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
支凤妖完成签到,获得积分10
刚刚
KDS发布了新的文献求助10
1秒前
万能图书馆应助蔺烨磊采纳,获得10
1秒前
陈龙完成签到,获得积分10
1秒前
1秒前
西蓝花香菜完成签到 ,获得积分10
1秒前
活泼孤风发布了新的文献求助10
1秒前
1秒前
victor完成签到,获得积分10
2秒前
Sandwich完成签到,获得积分20
2秒前
SCI完成签到,获得积分10
4秒前
暴躁的夏烟应助Wu采纳,获得10
5秒前
5秒前
fox199753206发布了新的文献求助10
5秒前
蔚蓝发布了新的文献求助10
5秒前
6秒前
nickchenzzz完成签到,获得积分10
7秒前
7秒前
诺奇发布了新的文献求助10
8秒前
快乐科研完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
ZHIXIANGWENG发布了新的文献求助10
11秒前
NiS发布了新的文献求助10
12秒前
ZHIXIANGWENG发布了新的文献求助10
14秒前
科目三应助陈晚拧采纳,获得10
14秒前
15秒前
南医李云龙完成签到,获得积分10
16秒前
漫天繁星发布了新的文献求助10
16秒前
能干的元龙完成签到 ,获得积分10
17秒前
月亮发布了新的文献求助10
17秒前
小蘑菇应助bo采纳,获得10
18秒前
坚定的铃铛应助大YY采纳,获得10
19秒前
21秒前
Ava应助开放的方盒采纳,获得20
21秒前
Lucas应助烛夜黎采纳,获得10
22秒前
木习习完成签到 ,获得积分10
23秒前
24秒前
大勺完成签到 ,获得积分10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Green Analytical Methods and Miniaturized Sample Preparation techniques for Forensic Drug Analysis 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561233
求助须知:如何正确求助?哪些是违规求助? 3134952
关于积分的说明 9410444
捐赠科研通 2835342
什么是DOI,文献DOI怎么找? 1558422
邀请新用户注册赠送积分活动 728199
科研通“疑难数据库(出版商)”最低求助积分说明 716729