光催化
降级(电信)
流出物
响应面法
硫酸盐
水溶液
化学
硝酸盐
反应速率常数
核化学
产量(工程)
辐照
材料科学
动力学
环境工程
色谱法
催化作用
有机化学
环境科学
复合材料
电信
物理
量子力学
计算机科学
核物理学
作者
Soraya Moreno Palácio,Fernando Rodolfo Espinoza‐Quiñones,Aparecido Nivaldo Módenes,Diego Ricieri Manenti,Cláudio Celestino Oliveira,Juliana Carla Garcia
摘要
The aim of the present study was to optimise the photocatalytic degradation of a mixture of six commercial azo dyes, by exposure to UV radiation in an aqueous solution containing TiO2-P25. Response surface methodology, based on a 32 full factorial experimental design with three replicates was employed for process optimisation with respect to two parameters: TiO2 (0.1–0.9 g/L) and H2O2 (1–100 mmol/L). The optimum conditions for photocatalytic degradation were achieved at concentrations of 0.5 g TiO2/L and 50 mmol H2O2/L, respectively. Dye mineralisation was confirmed by monitoring TOC, conductivity, sulfate and nitrate ions, with a sulfate ion yield of 96% under optimal reactor conditions. Complete decolorisation was attained after 240 min irradiation time for all tested azo-dyes, in a process which followed a pseudo-first kinetic order model, with a kinetic rate constant of approximately 0.018 min−1. Based on these results, this photocatalytic process has promise as an alternative for the treatment of textile effluents.
科研通智能强力驱动
Strongly Powered by AbleSci AI