Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 放化疗 病态的 完全响应 放射科 无线电技术 结直肠癌 肿瘤科 新辅助治疗 内科学 癌症 化疗 乳腺癌
作者
Zhenyu Liu,Xiaoyan Zhang,Yan‐Jie Shi,Lin Wang,Haitao Zhu,Zhenchao Tang,Shuo Wang,Xiao-Ting Li,Jie Tian,Ying‐Shi Sun
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (23): 7253-7262 被引量:542
标识
DOI:10.1158/1078-0432.ccr-17-1038
摘要

Abstract Purpose: To develop and validate a radiomics model for evaluating pathologic complete response (pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC). Experimental Design: We enrolled 222 patients (152 in the primary cohort and 70 in the validation cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. All patients underwent T2-weighted and diffusion-weighted imaging before and after chemoradiotherapy; 2,252 radiomic features were extracted from each patient before and after treatment imaging. The two-sample t test and the least absolute shrinkage and selection operator regression were used for feature selection, whereupon a radiomics signature was built with support vector machines. Multivariable logistic regression analysis was then used to develop a radiomics model incorporating the radiomics signature and independent clinicopathologic risk factors. The performance of the radiomics model was assessed by its calibration, discrimination, and clinical usefulness with independent validation. Results: The radiomics signature comprised 30 selected features and showed good discrimination performance in both the primary and validation cohorts. The individualized radiomics model, which incorporated the radiomics signature and tumor length, also showed good discrimination, with an area under the receiver operating characteristic curve of 0.9756 (95% confidence interval, 0.9185–0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the clinical utility of the radiomics model. Conclusions: Using pre- and posttreatment MRI data, we developed a radiomics model with excellent performance for individualized, noninvasive prediction of pCR. This model may be used to identify LARC patients who can omit surgery after chemoradiotherapy. Clin Cancer Res; 23(23); 7253–62. ©2017 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
西瓜完成签到,获得积分10
刚刚
刚刚
江江好完成签到,获得积分10
刚刚
MCQ发布了新的文献求助10
1秒前
1秒前
盲点发布了新的文献求助10
1秒前
1秒前
AAAAa发布了新的文献求助10
2秒前
正直无极完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
好久不见应助无言采纳,获得10
3秒前
麦地娜发布了新的文献求助10
3秒前
文耳东完成签到,获得积分10
3秒前
4秒前
乐观小之发布了新的文献求助10
4秒前
江江好发布了新的文献求助10
4秒前
Owen应助gan采纳,获得10
4秒前
阿司匹林完成签到,获得积分10
4秒前
4秒前
FIREWORK发布了新的文献求助10
5秒前
Jasper应助wuqi采纳,获得10
5秒前
shu发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
MCQ完成签到,获得积分10
7秒前
浮游应助小太阳采纳,获得10
7秒前
Endless发布了新的文献求助10
7秒前
皮代谷完成签到,获得积分10
7秒前
充电宝应助芝士就是力量采纳,获得10
8秒前
8秒前
ethereal发布了新的文献求助10
8秒前
花粉过敏发布了新的文献求助10
8秒前
斯文123发布了新的文献求助10
8秒前
zmhstb发布了新的文献求助10
9秒前
9秒前
orixero应助一个小胖子采纳,获得10
9秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049