Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 放化疗 病态的 完全响应 放射科 无线电技术 结直肠癌 肿瘤科 新辅助治疗 内科学 癌症 化疗 乳腺癌
作者
Zhenyu Liu,Xiaoyan Zhang,Yan‐Jie Shi,Lin Wang,Haitao Zhu,Zhenchao Tang,Shuo Wang,Xiao-Ting Li,Jie Tian,Ying‐Shi Sun
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (23): 7253-7262 被引量:459
标识
DOI:10.1158/1078-0432.ccr-17-1038
摘要

Purpose: To develop and validate a radiomics model for evaluating pathologic complete response (pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC).Experimental Design: We enrolled 222 patients (152 in the primary cohort and 70 in the validation cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. All patients underwent T2-weighted and diffusion-weighted imaging before and after chemoradiotherapy; 2,252 radiomic features were extracted from each patient before and after treatment imaging. The two-sample t test and the least absolute shrinkage and selection operator regression were used for feature selection, whereupon a radiomics signature was built with support vector machines. Multivariable logistic regression analysis was then used to develop a radiomics model incorporating the radiomics signature and independent clinicopathologic risk factors. The performance of the radiomics model was assessed by its calibration, discrimination, and clinical usefulness with independent validation.Results: The radiomics signature comprised 30 selected features and showed good discrimination performance in both the primary and validation cohorts. The individualized radiomics model, which incorporated the radiomics signature and tumor length, also showed good discrimination, with an area under the receiver operating characteristic curve of 0.9756 (95% confidence interval, 0.9185-0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the clinical utility of the radiomics model.Conclusions: Using pre- and posttreatment MRI data, we developed a radiomics model with excellent performance for individualized, noninvasive prediction of pCR. This model may be used to identify LARC patients who can omit surgery after chemoradiotherapy. Clin Cancer Res; 23(23); 7253-62. ©2017 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Umwandlung完成签到,获得积分10
1秒前
gorgeousgaga完成签到,获得积分10
1秒前
2秒前
2秒前
科研通AI5应助ipeakkka采纳,获得10
3秒前
852应助章家炜采纳,获得10
4秒前
Gauss应助张小汉采纳,获得30
6秒前
嘻嘻发布了新的文献求助10
6秒前
杰哥完成签到 ,获得积分10
7秒前
Ava应助赵小可可可可采纳,获得10
7秒前
科研通AI5应助kento采纳,获得30
8秒前
nkmenghan发布了新的文献求助10
9秒前
12秒前
redondo10完成签到,获得积分0
13秒前
14秒前
乔qiao发布了新的文献求助30
17秒前
WZ0904发布了新的文献求助10
18秒前
poegtam完成签到,获得积分10
19秒前
大胆盼兰发布了新的文献求助10
20秒前
wuyan204完成签到 ,获得积分10
21秒前
windcreator完成签到,获得积分10
21秒前
redondo5完成签到,获得积分0
21秒前
wangrswjx完成签到 ,获得积分10
21秒前
科研通AI5应助su采纳,获得10
21秒前
24秒前
26秒前
小二郎应助嘻嘻采纳,获得10
26秒前
yun完成签到 ,获得积分10
27秒前
27秒前
29秒前
健忘曼冬发布了新的文献求助10
29秒前
redondo完成签到,获得积分10
29秒前
momo完成签到,获得积分10
30秒前
希望天下0贩的0应助meng采纳,获得10
31秒前
龙歪歪发布了新的文献求助10
32秒前
32秒前
暮城完成签到,获得积分10
32秒前
33秒前
云墨完成签到 ,获得积分10
33秒前
35秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849