Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 放化疗 病态的 完全响应 放射科 无线电技术 结直肠癌 肿瘤科 新辅助治疗 内科学 癌症 化疗 乳腺癌
作者
Zhenyu Liu,Xiaoyan Zhang,Yan‐Jie Shi,Lin Wang,Haitao Zhu,Zhenchao Tang,Shuo Wang,Xiao-Ting Li,Jie Tian,Ying‐Shi Sun
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (23): 7253-7262 被引量:459
标识
DOI:10.1158/1078-0432.ccr-17-1038
摘要

Purpose: To develop and validate a radiomics model for evaluating pathologic complete response (pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC).Experimental Design: We enrolled 222 patients (152 in the primary cohort and 70 in the validation cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. All patients underwent T2-weighted and diffusion-weighted imaging before and after chemoradiotherapy; 2,252 radiomic features were extracted from each patient before and after treatment imaging. The two-sample t test and the least absolute shrinkage and selection operator regression were used for feature selection, whereupon a radiomics signature was built with support vector machines. Multivariable logistic regression analysis was then used to develop a radiomics model incorporating the radiomics signature and independent clinicopathologic risk factors. The performance of the radiomics model was assessed by its calibration, discrimination, and clinical usefulness with independent validation.Results: The radiomics signature comprised 30 selected features and showed good discrimination performance in both the primary and validation cohorts. The individualized radiomics model, which incorporated the radiomics signature and tumor length, also showed good discrimination, with an area under the receiver operating characteristic curve of 0.9756 (95% confidence interval, 0.9185-0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the clinical utility of the radiomics model.Conclusions: Using pre- and posttreatment MRI data, we developed a radiomics model with excellent performance for individualized, noninvasive prediction of pCR. This model may be used to identify LARC patients who can omit surgery after chemoradiotherapy. Clin Cancer Res; 23(23); 7253-62. ©2017 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏菲鹰完成签到,获得积分10
刚刚
情怀应助大可采纳,获得10
1秒前
1秒前
1秒前
深情白风完成签到,获得积分20
2秒前
青青子衿发布了新的文献求助10
2秒前
打工人章鱼哥完成签到 ,获得积分10
2秒前
骐骥过隙完成签到 ,获得积分10
2秒前
2秒前
木木发布了新的文献求助10
3秒前
ZCR发布了新的文献求助10
3秒前
ldx完成签到,获得积分10
4秒前
4秒前
受伤雁荷发布了新的文献求助10
5秒前
5秒前
钢之炼金术师完成签到 ,获得积分10
6秒前
bible完成签到,获得积分10
7秒前
科及完成签到,获得积分10
7秒前
难摧发布了新的文献求助10
7秒前
周季欣完成签到 ,获得积分10
7秒前
ste发布了新的文献求助10
7秒前
沸羊羊完成签到,获得积分10
8秒前
azure完成签到,获得积分10
8秒前
万幸鹿发布了新的文献求助10
8秒前
Big PAN Chicken完成签到,获得积分10
9秒前
9秒前
leozhe完成签到,获得积分20
9秒前
9秒前
9秒前
wu完成签到,获得积分10
11秒前
11秒前
英姑应助lalalapa666采纳,获得10
11秒前
星辰大海应助阿鑫采纳,获得10
11秒前
wu发布了新的文献求助10
13秒前
英姑应助受伤雁荷采纳,获得10
13秒前
斯文败类应助跳跃仙人掌采纳,获得10
13秒前
13秒前
领导范儿应助跳跃仙人掌采纳,获得10
13秒前
大模型应助跳跃仙人掌采纳,获得10
13秒前
小二郎应助跳跃仙人掌采纳,获得10
13秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262319
求助须知:如何正确求助?哪些是违规求助? 2903010
关于积分的说明 8323831
捐赠科研通 2573054
什么是DOI,文献DOI怎么找? 1398041
科研通“疑难数据库(出版商)”最低求助积分说明 653988
邀请新用户注册赠送积分活动 632568