Radiomics Analysis for Evaluation of Pathological Complete Response to Neoadjuvant Chemoradiotherapy in Locally Advanced Rectal Cancer

医学 放化疗 病态的 完全响应 放射科 无线电技术 结直肠癌 肿瘤科 新辅助治疗 内科学 癌症 化疗 乳腺癌
作者
Zhenyu Liu,Xiaoyan Zhang,Yan‐Jie Shi,Lin Wang,Haitao Zhu,Zhenchao Tang,Shuo Wang,Xiao-Ting Li,Jie Tian,Ying‐Shi Sun
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:23 (23): 7253-7262 被引量:539
标识
DOI:10.1158/1078-0432.ccr-17-1038
摘要

Abstract Purpose: To develop and validate a radiomics model for evaluating pathologic complete response (pCR) to neoadjuvant chemoradiotherapy in patients with locally advanced rectal cancer (LARC). Experimental Design: We enrolled 222 patients (152 in the primary cohort and 70 in the validation cohort) with clinicopathologically confirmed LARC who received chemoradiotherapy before surgery. All patients underwent T2-weighted and diffusion-weighted imaging before and after chemoradiotherapy; 2,252 radiomic features were extracted from each patient before and after treatment imaging. The two-sample t test and the least absolute shrinkage and selection operator regression were used for feature selection, whereupon a radiomics signature was built with support vector machines. Multivariable logistic regression analysis was then used to develop a radiomics model incorporating the radiomics signature and independent clinicopathologic risk factors. The performance of the radiomics model was assessed by its calibration, discrimination, and clinical usefulness with independent validation. Results: The radiomics signature comprised 30 selected features and showed good discrimination performance in both the primary and validation cohorts. The individualized radiomics model, which incorporated the radiomics signature and tumor length, also showed good discrimination, with an area under the receiver operating characteristic curve of 0.9756 (95% confidence interval, 0.9185–0.9711) in the validation cohort, and good calibration. Decision curve analysis confirmed the clinical utility of the radiomics model. Conclusions: Using pre- and posttreatment MRI data, we developed a radiomics model with excellent performance for individualized, noninvasive prediction of pCR. This model may be used to identify LARC patients who can omit surgery after chemoradiotherapy. Clin Cancer Res; 23(23); 7253–62. ©2017 AACR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
TOP完成签到 ,获得积分10
1秒前
wanci应助张三采纳,获得10
1秒前
超级万声发布了新的文献求助20
2秒前
情怀应助墨菲采纳,获得10
2秒前
雨滴音乐完成签到,获得积分10
3秒前
喜悦的一寡关注了科研通微信公众号
3秒前
DrJiang发布了新的文献求助10
3秒前
3秒前
3秒前
evvj完成签到,获得积分10
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
hbpyy发布了新的文献求助30
5秒前
丘比特应助鸭鸭采纳,获得10
6秒前
6秒前
科研通AI6应助queer采纳,获得10
6秒前
8秒前
大翟发布了新的文献求助10
8秒前
爆米花应助阿玖采纳,获得10
8秒前
tuanheqi发布了新的文献求助20
9秒前
9秒前
科研通AI6应助当归采纳,获得10
9秒前
sx发布了新的文献求助30
9秒前
田様应助Robin采纳,获得30
9秒前
ding应助binbinbin采纳,获得10
9秒前
张一一完成签到,获得积分10
9秒前
10秒前
lhp完成签到,获得积分10
11秒前
想去彩虹海完成签到,获得积分10
11秒前
Xiaoxiannv完成签到,获得积分10
11秒前
我不爱池鱼应助3636采纳,获得20
11秒前
名侦探柯基完成签到,获得积分10
12秒前
12秒前
张zhang完成签到,获得积分10
12秒前
13秒前
13秒前
nihaku发布了新的文献求助10
13秒前
wxy发布了新的文献求助10
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601020
求助须知:如何正确求助?哪些是违规求助? 4686584
关于积分的说明 14845029
捐赠科研通 4679502
什么是DOI,文献DOI怎么找? 2539154
邀请新用户注册赠送积分活动 1506042
关于科研通互助平台的介绍 1471253