Dynamic classifier selection: Recent advances and perspectives

计算机科学 甲骨文公司 分类器(UML) 人工智能 分类 机器学习 数据挖掘 概率逻辑 软件工程
作者
Rafael M. O. Cruz,Robert Sabourin,George D. C. Cavalcanti
出处
期刊:Information Fusion [Elsevier]
卷期号:41: 195-216 被引量:365
标识
DOI:10.1016/j.inffus.2017.09.010
摘要

Multiple Classifier Systems (MCS) have been widely studied as an alternative for increasing accuracy in pattern recognition. One of the most promising MCS approaches is Dynamic Selection (DS), in which the base classifiers are selected on the fly, according to each new sample to be classified. This paper provides a review of the DS techniques proposed in the literature from a theoretical and empirical point of view. We propose an updated taxonomy based on the main characteristics found in a dynamic selection system: (1) The methodology used to define a local region for the estimation of the local competence of the base classifiers; (2) The source of information used to estimate the level of competence of the base classifiers, such as local accuracy, oracle, ranking and probabilistic models, and (3) The selection approach, which determines whether a single or an ensemble of classifiers is selected. We categorize the main dynamic selection techniques in the DS literature based on the proposed taxonomy. We also conduct an extensive experimental analysis, considering a total of 18 state-of-the-art dynamic selection techniques, as well as static ensemble combination and single classification models. To date, this is the first analysis comparing all the key DS techniques under the same experimental protocol. Furthermore, we also present several perspectives and open research questions that can be used as a guide for future works in this domain.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lxt完成签到,获得积分10
1秒前
1秒前
Zx_1993应助wackykao采纳,获得10
2秒前
3秒前
3秒前
3秒前
tooty发布了新的文献求助10
3秒前
52huihui关注了科研通微信公众号
4秒前
4秒前
5秒前
nito发布了新的文献求助10
5秒前
xinxin发布了新的文献求助10
6秒前
共享精神应助北山采纳,获得10
6秒前
侠客完成签到,获得积分10
6秒前
小小月发布了新的文献求助10
6秒前
Akim应助曹梦龙采纳,获得10
7秒前
zheng发布了新的文献求助10
7秒前
凝望发布了新的文献求助10
7秒前
7秒前
赘婿应助泌尿科小医生采纳,获得10
9秒前
刘一一发布了新的文献求助10
9秒前
9秒前
9秒前
xiaolei001应助科研通管家采纳,获得10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
ding应助科研通管家采纳,获得50
9秒前
giggle应助科研通管家采纳,获得10
9秒前
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
赘婿应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
9秒前
CodeCraft应助科研通管家采纳,获得10
9秒前
热心树叶应助科研通管家采纳,获得30
10秒前
MM应助科研通管家采纳,获得10
10秒前
Orange应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5521225
求助须知:如何正确求助?哪些是违规求助? 4612762
关于积分的说明 14535207
捐赠科研通 4550234
什么是DOI,文献DOI怎么找? 2493599
邀请新用户注册赠送积分活动 1474715
关于科研通互助平台的介绍 1446175