Dynamic classifier selection: Recent advances and perspectives

计算机科学 甲骨文公司 分类器(UML) 人工智能 分类 机器学习 数据挖掘 概率逻辑 软件工程
作者
Rafael M. O. Cruz,Robert Sabourin,George D. C. Cavalcanti
出处
期刊:Information Fusion [Elsevier BV]
卷期号:41: 195-216 被引量:365
标识
DOI:10.1016/j.inffus.2017.09.010
摘要

Multiple Classifier Systems (MCS) have been widely studied as an alternative for increasing accuracy in pattern recognition. One of the most promising MCS approaches is Dynamic Selection (DS), in which the base classifiers are selected on the fly, according to each new sample to be classified. This paper provides a review of the DS techniques proposed in the literature from a theoretical and empirical point of view. We propose an updated taxonomy based on the main characteristics found in a dynamic selection system: (1) The methodology used to define a local region for the estimation of the local competence of the base classifiers; (2) The source of information used to estimate the level of competence of the base classifiers, such as local accuracy, oracle, ranking and probabilistic models, and (3) The selection approach, which determines whether a single or an ensemble of classifiers is selected. We categorize the main dynamic selection techniques in the DS literature based on the proposed taxonomy. We also conduct an extensive experimental analysis, considering a total of 18 state-of-the-art dynamic selection techniques, as well as static ensemble combination and single classification models. To date, this is the first analysis comparing all the key DS techniques under the same experimental protocol. Furthermore, we also present several perspectives and open research questions that can be used as a guide for future works in this domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Joleneli100完成签到,获得积分10
1秒前
bao驳回了无花果应助
1秒前
1秒前
星辰大海应助渊_采纳,获得10
1秒前
思绪完成签到 ,获得积分10
2秒前
YEHEI完成签到 ,获得积分10
2秒前
李健应助Na2CO3采纳,获得10
2秒前
vesta完成签到,获得积分10
2秒前
2秒前
3秒前
GG发布了新的文献求助10
3秒前
OKOK发布了新的文献求助10
3秒前
汉堡一号完成签到,获得积分10
3秒前
3秒前
3秒前
Patrick完成签到,获得积分20
3秒前
3秒前
026发布了新的文献求助10
3秒前
richestchen完成签到,获得积分10
3秒前
4秒前
LSY发布了新的文献求助10
4秒前
junjie发布了新的文献求助10
4秒前
与秋逐鹿发布了新的文献求助10
5秒前
科研通AI6应助邓谷云采纳,获得10
5秒前
5秒前
风云完成签到,获得积分10
5秒前
所所应助harden采纳,获得10
5秒前
研友_VZG7GZ应助禾几采纳,获得10
5秒前
6秒前
6秒前
6秒前
生动曼冬关注了科研通微信公众号
6秒前
思绪关注了科研通微信公众号
6秒前
Fearlessj发布了新的文献求助10
6秒前
笨笨歌曲完成签到,获得积分10
7秒前
song完成签到,获得积分20
7秒前
Zx_1993应助ttx采纳,获得10
7秒前
lulu发布了新的文献求助10
7秒前
AamirAli完成签到,获得积分10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5071804
求助须知:如何正确求助?哪些是违规求助? 4292378
关于积分的说明 13374385
捐赠科研通 4113281
什么是DOI,文献DOI怎么找? 2252316
邀请新用户注册赠送积分活动 1257279
关于科研通互助平台的介绍 1190064