Lithium Self-Discharge and Its Prevention: Direct Visualization through In Situ Electrochemical Scanning Transmission Electron Microscopy

法拉第效率 电解质 材料科学 电化学 透射电子显微镜 扫描透射电子显微镜 电极 自放电 成核 化学工程 锂(药物) 纳米技术 阳极 扫描电子显微镜 复合材料 化学 有机化学 物理化学 内分泌学 工程类 医学
作者
Katharine L. Harrison,Kevin R. Zavadil,Nathan Hahn,Xiangbo Meng,Jeffrey W. Elam,Andrew J. Leenheer,Ji‐Guang Zhang,Katherine L. Jungjohann
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (11): 11194-11205 被引量:61
标识
DOI:10.1021/acsnano.7b05513
摘要

To understand the mechanism that controls low-aspect-ratio lithium deposition morphologies for Li-metal anodes in batteries, we conducted direct visualization of Li-metal deposition and stripping behavior through nanoscale in situ electrochemical scanning transmission electron microscopy (EC-STEM) and macroscale-cell electrochemistry experiments in a recently developed and promising solvate electrolyte, 4 M lithium bis(fluorosulfonyl)imide in 1,2-dimethoxyethane. In contrast to published coin cell studies in the same electrolyte, our experiments revealed low Coulombic efficiencies and inhomogeneous Li morphology during in situ observation. We conclude that this discrepancy in Coulombic efficiency and morphology of the Li deposits was dependent on the presence of a compressed lithium separator interface, as we have confirmed through macroscale (not in the transmission electron microscope) electrochemical experiments. Our data suggests that cell compression changed how the solid-electrolyte interphase formed, which is likely responsible for improved morphology and Coulombic efficiency with compression. Furthermore, during the in situ EC-STEM experiments, we observed direct evidence of nanoscale self-discharge in the solvate electrolyte (in the state of electrical isolation). This self-discharge was duplicated in the macroscale, but it was less severe with electrode compression, likely due to a more passivating and corrosion-resistant solid-electrolyte interphase formed in the presence of compression. By combining the solvate electrolyte with a protective LiAl0.3S coating, we show that the Li nucleation density increased during deposition, leading to improved morphological uniformity. Furthermore, self-discharge was suppressed during rest periods in the cycling profile with coatings present, as evidenced through EC-STEM and confirmed with coin cell data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zzw完成签到,获得积分10
刚刚
坦率的面包完成签到 ,获得积分10
1秒前
烟花应助小鱼干采纳,获得10
1秒前
科研通AI6应助鲸鱼采纳,获得10
2秒前
3秒前
lululu完成签到 ,获得积分10
3秒前
3秒前
qi发布了新的文献求助10
4秒前
Owen应助hhgcc采纳,获得10
4秒前
斯文静竹发布了新的文献求助10
4秒前
Miyya完成签到,获得积分10
4秒前
Ava应助Lxxixixi采纳,获得10
4秒前
yl发布了新的文献求助10
5秒前
拉长的秋白完成签到 ,获得积分10
6秒前
6秒前
6秒前
怡春院李老鸨完成签到,获得积分10
6秒前
科研通AI6应助迅速的宛海采纳,获得10
7秒前
7秒前
8秒前
bingo完成签到,获得积分10
8秒前
彭于晏应助zgd采纳,获得10
8秒前
乌冬面发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
10秒前
11秒前
番茄爱喝粥完成签到,获得积分10
12秒前
12秒前
livian发布了新的文献求助10
12秒前
DL发布了新的文献求助10
13秒前
13秒前
言西早完成签到 ,获得积分10
14秒前
WWWUBING完成签到,获得积分10
14秒前
14秒前
红柚完成签到,获得积分10
16秒前
16秒前
李爱国应助tdtk采纳,获得10
16秒前
Lxxixixi发布了新的文献求助10
16秒前
刘凯完成签到,获得积分10
17秒前
科研通AI6应助yl采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871