Robust Stacking-Independent Ultrafast Charge Transfer in MoS2/WS2 Bilayers

堆积 材料科学 异质结 超短脉冲 电子转移 光电子学 密度泛函理论 范德瓦尔斯力 双层 激子 电荷(物理) 化学物理 纳米技术 光学 凝聚态物理 物理 化学 计算化学 分子 量子力学 生物化学 有机化学 核磁共振 激光器
作者
Ziheng Ji,Hao Hong,Jin Zhang,Qi Zhang,Wei Huang,Ting Cao,Ruixi Qiao,Can Liu,Jing Liang,Chuanhong Jin,Liying Jiao,Kebin Shi,Sheng Meng,Kaihui Liu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:11 (12): 12020-12026 被引量:148
标识
DOI:10.1021/acsnano.7b04541
摘要

Van der Waals-coupled two-dimensional (2D) heterostructures have attracted great attention recently due to their high potential in the next-generation photodetectors and solar cells. The understanding of charge-transfer process between adjacent atomic layers is the key to design optimal devices as it directly determines the fundamental response speed and photon-electron conversion efficiency. However, general belief and theoretical studies have shown that the charge transfer behavior depends sensitively on interlayer configurations, which is difficult to control accurately, bringing great uncertainties in device designing. Here we investigate the ultrafast dynamics of interlayer charge transfer in a prototype heterostructure, the MoS2/WS2 bilayer with various stacking configurations, by optical two-color ultrafast pump–probe spectroscopy. Surprisingly, we found that the charge transfer is robust against varying interlayer twist angles and interlayer coupling strength, in time scale of ∼90 fs. Our observation, together with atomic-resolved transmission electron characterization and time-dependent density functional theory simulations, reveals that the robust ultrafast charge transfer is attributed to the heterogeneous interlayer stretching/sliding, which provides additional channels for efficient charge transfer previously unknown. Our results elucidate the origin of transfer rate robustness against interlayer stacking configurations in optical devices based on 2D heterostructures, facilitating their applications in ultrafast and high-efficient optoelectronic and photovoltaic devices in the near future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助张羽翀采纳,获得10
3秒前
蛋白发布了新的文献求助10
3秒前
愚者gggg完成签到,获得积分10
3秒前
7秒前
zjk关闭了zjk文献求助
10秒前
10秒前
mepumpkin发布了新的文献求助10
10秒前
Mandy完成签到 ,获得积分10
11秒前
mfpp完成签到,获得积分10
12秒前
脑洞疼应助wuyan采纳,获得10
12秒前
13秒前
13秒前
duxiao发布了新的文献求助10
15秒前
望北楼主发布了新的文献求助10
15秒前
Venovenom发布了新的文献求助100
17秒前
qi0625完成签到,获得积分10
18秒前
excellent_shit完成签到,获得积分10
21秒前
23秒前
23秒前
23秒前
健忘白关注了科研通微信公众号
24秒前
25秒前
俭朴的凡之完成签到,获得积分10
25秒前
阳光BOY发布了新的文献求助10
28秒前
一往如常发布了新的文献求助10
28秒前
spirit发布了新的文献求助10
29秒前
Andy完成签到,获得积分10
31秒前
31秒前
爆米花应助阳光BOY采纳,获得10
35秒前
爆米花应助内向寒云采纳,获得30
36秒前
37秒前
行道吉安发布了新的文献求助10
38秒前
43秒前
45秒前
45秒前
橙花完成签到 ,获得积分10
46秒前
46秒前
小汤完成签到 ,获得积分10
47秒前
木子发布了新的文献求助10
48秒前
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962151
求助须知:如何正确求助?哪些是违规求助? 3508388
关于积分的说明 11140723
捐赠科研通 3241093
什么是DOI,文献DOI怎么找? 1791332
邀请新用户注册赠送积分活动 872809
科研通“疑难数据库(出版商)”最低求助积分说明 803382