Mechanical Forces Guiding Staphylococcus aureus Cellular Invasion

金黄色葡萄球菌 微生物学 纳米技术 材料科学 生物 细菌 遗传学
作者
Valeria Prystopiuk,Cécile Feuillie,Philippe Herman‐Bausier,Felipe Viela,David Alsteens,Giampiero Pietrocola,Pietro Speziale,Yves F. Dufrêne
出处
期刊:ACS Nano [American Chemical Society]
卷期号:12 (4): 3609-3622 被引量:60
标识
DOI:10.1021/acsnano.8b00716
摘要

Staphylococcus aureus can invade various types of mammalian cells, thereby enabling it to evade host immune defenses and antibiotics. The current model for cellular invasion involves the interaction between the bacterial cell surface located fibronectin (Fn)-binding proteins (FnBPA and FnBPB) and the α5β1 integrin in the host cell membrane. While it is believed that the extracellular matrix protein Fn serves as a bridging molecule between FnBPs and integrins, the fundamental forces involved are not known. Using single-cell and single-molecule experiments, we unravel the molecular forces guiding S. aureus cellular invasion, focusing on the prototypical three-component FnBPA–Fn–integrin interaction. We show that FnBPA mediates bacterial adhesion to soluble Fn via strong forces (∼1500 pN), consistent with a high-affinity tandem β-zipper, and that the FnBPA–Fn complex further binds to immobilized α5β1 integrins with a strength much higher than that of the classical Fn–integrin bond (∼100 pN). The high mechanical stability of the Fn bridge favors an invasion model in which Fn binding by FnBPA leads to the exposure of cryptic integrin-binding sites via allosteric activation, which in turn engage in a strong interaction with integrins. This activation mechanism emphasizes the importance of protein mechanobiology in regulating bacterial–host adhesion. We also find that Fn-dependent adhesion between S. aureus and endothelial cells strengthens with time, suggesting that internalization occurs within a few minutes. Collectively, our results provide a molecular foundation for the ability of FnBPA to trigger host cell invasion by S. aureus and offer promising prospects for the development of therapeutic approaches against intracellular pathogens.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎发布了新的文献求助10
1秒前
1秒前
dingding完成签到,获得积分10
2秒前
2秒前
爆米花应助severn采纳,获得10
2秒前
完美世界应助卡卡罗特采纳,获得10
3秒前
科研通AI5应助江峰采纳,获得10
3秒前
细腻的宫二完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
Coatings发布了新的文献求助10
8秒前
tqmx完成签到,获得积分10
8秒前
科研通AI5应助支问凝采纳,获得10
9秒前
10秒前
孤虹哲凝发布了新的文献求助100
11秒前
12秒前
12秒前
嘎嘎完成签到,获得积分20
12秒前
高大的可仁完成签到,获得积分10
13秒前
13秒前
wanci应助星烁采纳,获得10
13秒前
13秒前
糯糯发布了新的文献求助10
14秒前
14秒前
14秒前
Phidlo完成签到,获得积分10
15秒前
看看发布了新的文献求助10
15秒前
SciGPT应助风趣的傲之采纳,获得10
15秒前
16秒前
科研小菜狗完成签到,获得积分10
17秒前
天天发布了新的文献求助10
17秒前
在水一方应助小小科研人采纳,获得10
17秒前
liuzm发布了新的文献求助10
18秒前
18秒前
斑ban发布了新的文献求助10
18秒前
20秒前
江峰发布了新的文献求助10
20秒前
wangrblzu应助狂野砖头采纳,获得10
20秒前
CipherSage应助忆楠采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
An International System for Human Cytogenomic Nomenclature (2024) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769645
求助须知:如何正确求助?哪些是违规求助? 3314713
关于积分的说明 10173349
捐赠科研通 3030002
什么是DOI,文献DOI怎么找? 1662548
邀请新用户注册赠送积分活动 795036
科研通“疑难数据库(出版商)”最低求助积分说明 756500