A two-stage multi-view learning framework based computer-aided diagnosis of liver tumors with contrast enhanced ultrasound images

阶段(地层学) 超声波 对比度(视觉) 放射科 超声造影 计算机科学 医学 人工智能 生物 古生物学
作者
Le‐Hang Guo,Dan Wang,Yiyi Qian,Zheng Xiao,Chong‐Ke Zhao,Xiaolong Li,Xiao‐Wan Bo,Wenwen Yue,Qi Zhang,Jun Shi,Hui‐Xiong Xu
出处
期刊:Clinical Hemorheology and Microcirculation [IOS Press]
卷期号:69 (3): 343-354 被引量:85
标识
DOI:10.3233/ch-170275
摘要

OBJECTIVE:With the fast development of artificial intelligence techniques, we proposed a novel two-stage multi-view learning framework for the contrast-enhanced ultrasound (CEUS) based computer-aided diagnosis for liver tumors, which adopted only three typical CEUS images selected from the arterial phase, portal venous phase and late phase. MATERIALS AND METHODS:In the first stage, the deep canonical correlation analysis (DCCA) was performed on three image pairs between the arterial and portal venous phases, arterial and delayed phases, and portal venous and delayed phases respectively, which then generated total six-view features. While in the second stage, these multi-view features were then fed to a multiple kernel learning (MKL) based classifier to further promote the diagnosis result. Two MKL classification algorithms were evaluated in this MKL-based classification framework. We evaluated proposed DCCA-MKL framework on 93 lesions (47 malignant cancers vs. 46 benign tumors). RESULTS:The proposed DCCA-MKL framework achieved the mean classification accuracy, sensitivity, specificity, Youden index, false positive rate, and false negative rate of 90.41 ± 5.80%, 93.56 ± 5.90%, 86.89 ± 9.38%, 79.44 ± 11.83%, 13.11 ± 9.38% and 6.44 ± 5.90%, respectively, by soft margin MKL classifier. CONCLUSION:The experimental results indicate that the proposed DCCA-MKL framework achieves best performance for discriminating benign liver tumors from malignant liver cancers. Moreover, it is also proved that the three-phase CEUS image based CAD is feasible for liver tumors with the proposed DCCA-MKL framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Passskd发布了新的文献求助10
1秒前
4秒前
5秒前
6秒前
未耕完成签到,获得积分10
8秒前
ccm应助大胆蛋挞采纳,获得10
9秒前
搜集达人应助大胆蛋挞采纳,获得10
9秒前
朱英俊完成签到,获得积分10
9秒前
朱英俊发布了新的文献求助10
13秒前
14秒前
科目三应助罗尔与柯西采纳,获得10
14秒前
十一完成签到,获得积分10
16秒前
18秒前
思洁WAIT发布了新的文献求助10
18秒前
shepherd发布了新的文献求助10
19秒前
20秒前
科研通AI2S应助liudy采纳,获得10
22秒前
Edison发布了新的文献求助10
23秒前
23秒前
酷波er应助csy采纳,获得10
23秒前
Jasper应助Passskd采纳,获得10
24秒前
万能图书馆应助广隶采纳,获得10
24秒前
kento应助Harper采纳,获得100
26秒前
LuoYR@SZU发布了新的文献求助10
29秒前
shepherd完成签到,获得积分10
30秒前
30秒前
31秒前
移动马桶完成签到 ,获得积分10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得10
34秒前
毛豆爸爸应助科研通管家采纳,获得20
34秒前
顾矜应助科研通管家采纳,获得10
34秒前
orixero应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得10
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
思源应助科研通管家采纳,获得10
34秒前
34秒前
8R60d8应助科研通管家采纳,获得10
34秒前
嗯哼应助科研通管家采纳,获得20
34秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161703
求助须知:如何正确求助?哪些是违规求助? 2813001
关于积分的说明 7898208
捐赠科研通 2471974
什么是DOI,文献DOI怎么找? 1316269
科研通“疑难数据库(出版商)”最低求助积分说明 631278
版权声明 602129