<italic>Her2Net</italic>: A Deep Framework for Semantic Segmentation and Classification of Cell Membranes and Nuclei in Breast Cancer Evaluation

人工智能 计算机科学 深度学习 Softmax函数 联营 模式识别(心理学) 卷积神经网络 背景(考古学) 分割 乳腺癌 癌症 医学 古生物学 内科学 生物
作者
Monjoy Saha,Chandan Chakraborty
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:27 (5): 2189-2200 被引量:154
标识
DOI:10.1109/tip.2018.2795742
摘要

We present an efficient deep learning framework for identifying, segmenting, and classifying cell membranes and nuclei from human epidermal growth factor receptor-2 (HER2)-stained breast cancer images with minimal user intervention. This is a long-standing issue for pathologists because the manual quantification of HER2 is error-prone, costly, and time-consuming. Hence, we propose a deep learning-based HER2 deep neural network (Her2Net) to solve this issue. The convolutional and deconvolutional parts of the proposed Her2Net framework consisted mainly of multiple convolution layers, max-pooling layers, spatial pyramid pooling layers, deconvolution layers, up-sampling layers, and trapezoidal long short-term memory (TLSTM). A fully connected layer and a softmax layer were also used for classification and error estimation. Finally, HER2 scores were calculated based on the classification results. The main contribution of our proposed Her2Net framework includes the implementation of TLSTM and a deep learning framework for cell membrane and nucleus detection, segmentation, and classification and HER2 scoring. Our proposed Her2Net achieved 96.64% precision, 96.79% recall, 96.71% F-score, 93.08% negative predictive value, 98.33% accuracy, and a 6.84% false-positive rate. Our results demonstrate the high accuracy and wide applicability of the proposed Her2Net in the context of HER2 scoring for breast cancer evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苏洋完成签到,获得积分20
刚刚
dovis发布了新的文献求助10
刚刚
1秒前
充电宝应助墨墨叻采纳,获得10
1秒前
LL发布了新的文献求助30
2秒前
echo发布了新的文献求助10
2秒前
2秒前
滕擎发布了新的文献求助10
2秒前
accpeted发布了新的文献求助10
2秒前
li完成签到,获得积分10
2秒前
萧水白应助隐形以晴采纳,获得10
3秒前
半圆亻完成签到,获得积分10
3秒前
Xxxxr完成签到,获得积分10
3秒前
苏洋发布了新的文献求助10
3秒前
4秒前
王玉完成签到,获得积分10
4秒前
FashionBoy应助刘二狗采纳,获得10
5秒前
海关监管环境完成签到,获得积分10
6秒前
kopp完成签到,获得积分10
7秒前
Bubble发布了新的文献求助10
7秒前
8秒前
9秒前
9秒前
下次见完成签到,获得积分10
9秒前
9秒前
派派完成签到,获得积分10
10秒前
饼饼完成签到,获得积分10
11秒前
11秒前
13秒前
13秒前
sunny30发布了新的文献求助10
13秒前
shtatbf应助Santiago采纳,获得10
13秒前
yatou5651应助小新采纳,获得30
13秒前
14秒前
冬青发布了新的文献求助30
15秒前
王玉发布了新的文献求助10
15秒前
16秒前
酷波er应助dovis采纳,获得10
16秒前
刘二狗发布了新的文献求助10
17秒前
云朵发布了新的文献求助10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951800
求助须知:如何正确求助?哪些是违规求助? 3497233
关于积分的说明 11086336
捐赠科研通 3227767
什么是DOI,文献DOI怎么找? 1784520
邀请新用户注册赠送积分活动 868692
科研通“疑难数据库(出版商)”最低求助积分说明 801163