Additive Manufacturing of Solid Rocket Propellant Grains

推进剂 固体燃料火箭 材料科学 航空航天工程 火箭(武器) 火箭推进剂 航空学 工程类
作者
R. Arun Chandru,Nikhil Balasubramanian,Charlie Oommen,B. N. Raghunandan
出处
期刊:Journal of Propulsion and Power [American Institute of Aeronautics and Astronautics]
卷期号:34 (4): 1090-1093 被引量:79
标识
DOI:10.2514/1.b36734
摘要

No AccessTechnical NoteAdditive Manufacturing of Solid Rocket Propellant GrainsR. Arun Chandru, Nikhil Balasubramanian, Charlie Oommen and B. N. RaghunandanR. Arun ChandruIndian Institute of Science, Bangalore 560 012, India, Nikhil BalasubramanianIndian Institute of Science, Bangalore 560 012, India, Charlie OommenIndian Institute of Science, Bangalore 560 012, India and B. N. RaghunandanIndian Institute of Science, Bangalore 560 012, IndiaPublished Online:30 Jan 2018https://doi.org/10.2514/1.B36734SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Sutton G. P. and Biblarz O., Rocket Propulsion Elements, 7th ed., Wiley, New York, 2001, pp. 444–453, 511–515. Google Scholar[2] Kuo K. K. and Summerfield M., “Theory of Steady-State Burning of Gas-Permeable Propellants,” AIAA Journal, Vol. 12, No. 1, 1974, pp. 49–56. doi:https://doi.org/10.2514/3.49152 AIAJAH 0001-1452 LinkGoogle Scholar[3] Gibson I., Rosen D. and Stucker B., Additive Manufacturing Technologies, 2nd ed., Springer, New York, 2015, pp. 63–292. doi:https://doi.org/10.1007/978-1-4939-2113-3 CrossrefGoogle Scholar[4] Schiller G. J., “Additive Manufacturing for Aerospace,” IEEE Aerospace Conference, IEEE Publ., Piscataway, NJ, March 2015, pp. 1–8. doi:https://doi.org/10.1109/AERO.2015.7118958 Google Scholar[5] Bauer C., Metsker Y., von Sethe C., Mutschler M., Bambauer M., Lungu P. and Brandl M., “Application of Additive Manufacturing in Solid and Hybrid Rocket Grain Design,” 52nd AIAA/SAE/ASEE Joint Propulsion Conference, AIAA Propulsion and Energy Forum, AIAA Paper 2016-4697, July 2016. doi:https://doi.org/10.2514/6.2016-4697 LinkGoogle Scholar[6] Armold D., Boyer J. E., Kuo K., Fuller J. K., DeSain J. and Curtiss T. J., “Test of Hybrid Rocket Fuel Grains with Swirl Patterns Fabricated Using Rapid Prototyping Technology,” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2013-4141, July 2013. doi:https://doi.org/10.2514/6.2013-4141 LinkGoogle Scholar[7] Whitmore S. A., Walker S. D., Merkley D. P. and Sobbi M., “High Regression Rate Hybrid Rocket Fuel Grains with Helical Port Structures,” Journal of Propulsion and Power, Vol. 31, No. 6, 2015, pp. 1727–1738. doi:https://doi.org/10.2514/1.B35615 JPPOEL 0748-4658 LinkGoogle Scholar[8] Sun K., Wei T., Ahn B., Seo J., Dillon S. and Lewis J., “3-D Printing of Interdigitated Li-Ion Microbattery Architectures,” Advanced Materials, Vol. 25, No. 33, 2013, pp. 4539–4543. doi:https://doi.org/10.1002/adma.201301036 ADVMEW 0935-9648 CrossrefGoogle Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byEngineering Particle Agglomerate and Flame Propagation in 3D ‐printed Al/ CuO Nanocomposites27 January 2023Reactivity regulation of B/KNO3/PVDF energetic sticks prepared by direct ink writingChemical Engineering Journal, Vol. 450Additive manufacturing of energetic materials: Tailoring energetic performance via printingJournal of Materials Science & Technology, Vol. 127Effect of Penetrative Combustion on Regression Rate of 3D Printed Hybrid Rocket Fuel7 November 2022 | Aerospace, Vol. 9, No. 11Fabrication and characterization of mussel-inspired layer-by-layer assembled CL-20-based energetic films via micro-jet printingDefence Technology, Vol. 18, No. 10Preparation of TNT/HMX-based melt-cast explosives with enhanced mechanical performance by fused deposition modeling (FDM)4 September 2022 | Journal of Energetic Materials, Vol. 163D Printing Techniques for Paraffin-Based Fuel Grains1 September 2022 | Aerotecnica Missili & Spazio, Vol. 101, No. 33D printing of gun propellants based on laminated object manufacturing10 May 2022 | Materials and Manufacturing Processes, Vol. 37, No. 11A Recent Trend on Additive Manufacturing Sustainability with Supply Chain Management Concept, Multicriteria Decision Making TechniquesAdvances in Materials Science and Engineering, Vol. 2022Shape and material optimization of problems with dynamically evolving interfaces applied to solid rocket motors5 August 2022 | Structural and Multidisciplinary Optimization, Vol. 65, No. 8Comparing the capabilities of vibration-assisted printing (VAP) and direct-write additive manufacturing techniques10 August 2022 | The International Journal of Advanced Manufacturing Technology, Vol. 121, No. 11-12Metal Additive Manufacturing for Propulsion ApplicationsPaul R. Gradl, Omar R. Mireles, Christopher S. Protz and Chance P. Garcia12 May 2022Component Performance and Application CharacteristicsThomasTeasley, Paul R.Gradl, Darren C.Tinker, Omar R.Mireles and AgustinDiaz1 July 2022Tuning energy output of PTFE/Al composite materials through gradient structureDefence Technology, Vol. 17Thermal Decomposition Performance of CL‐20‐Based Ultraviolet Curing Propellants3 March 2022 | Propellants, Explosives, Pyrotechnics, Vol. 47, No. 5Simulation of printer nozzle for 3D printing TNT/HMX based melt-cast explosive5 January 2022 | The International Journal of Advanced Manufacturing Technology, Vol. 119, No. 5-6Hydrogen peroxide – A promising oxidizer for rocket propulsion and its application in solid rocket propellantsFirePhysChem, Vol. 2, No. 1Joining and welding with a nanothermite and exothermic bonding using reactive multi-nanolayers – A reviewJournal of Manufacturing Processes, Vol. 75FDM 3D printing of combustible structures: First resultsMendeleev Communications, Vol. 32, No. 2Interface History on Strain Field Evolution in Epoxy Resins21 January 2022 | ACS Applied Polymer Materials, Vol. 4, No. 2Validation of CL‐20‐based Propellant Formulations for Photopolymerization 3D Printing14 October 2021 | Propellants, Explosives, Pyrotechnics, Vol. 46, No. 12Distributed manufacturing: A case study in additive manufacturing face masks for the COVID-19 pandemicAdditive Manufacturing Letters, Vol. 1Metal Additive Manufacturing for Satellites and Rockets17 December 2021 | Applied Sciences, Vol. 11, No. 24Additive Manufacturing of a Special-Shaped Energetic Grain and Its Performance4 December 2021 | Micromachines, Vol. 12, No. 12Design of Low-Cost Solid Propellant Engine Test Bench and Electronic Embedded System used for Small RocketsMechanism of microwave-initiated ignition of sensitized energetic nanocompositesChemical Engineering Journal, Vol. 4153D printing of RDX-based aluminized high explosives with gradient structure, significantly altering the critical dimensions15 February 2021 | Journal of Materials Science, Vol. 56, No. 15A Review: Advances and Modernization in U.S Army Gun Propellants15 March 2021 | JOM, Vol. 73, No. 4Fabrication of gradient structured HMX/Al and its combustion performanceCombustion and Flame, Vol. 226Utilization of additive manufacturing in hybrid rocket technology: A reviewActa Astronautica, Vol. 180Experimental and Numerical Study on Temperature Distribution of Infrared Heater Used for Curing Solid Propellant Slurries27 September 2020Progress towards nanoengineered energetic materialsProceedings of the Combustion Institute, Vol. 38, No. 1Deep learning for synthetic microstructure generation in a materials-by-design framework for heterogeneous energetic materials6 August 2020 | Scientific Reports, Vol. 10, No. 1Fabrication and investigation of 3D-printed gun propellantsMaterials & Design, Vol. 192Characterization of Aluminum Powders: III. Non‐Isothermal Oxidation and Combustion of Modern Aluminized Solid Propellants with Nanometals and Nanooxides27 January 2020 | Propellants, Explosives, Pyrotechnics, Vol. 45, No. 5Combustion of 3D printed 90 wt% loading reinforced nanothermiteCombustion and Flame, Vol. 215Soldered copper lap joints using reactive material architectures as a heat sourceManufacturing Letters, Vol. 24Spatially focused microwave ignition of metallized energetic materialsJournal of Applied Physics, Vol. 127, No. 5Development of Propellant Compositions for Vat Photopolymerization Additive Manufacturing4 December 2019 | Propellants, Explosives, Pyrotechnics, Vol. 45, No. 1Ignition and combustion analysis of direct write fabricated aluminum/metal oxide/PVDF filmsCombustion and Flame, Vol. 211Preliminary investigations on extrusion of high viscosity slurry using direct writing technique6 August 2020 | International Journal for Simulation and Multidisciplinary Design Optimization, Vol. 11Progress in Additive Manufacturing of Energetic Materials: Creating the Reactive Microstructures with High Potential of Applications29 May 2019 | Propellants, Explosives, Pyrotechnics, Vol. 44, No. 8Direct Writing of a 90 wt% Particle Loading Nanothermite16 April 2019 | Advanced Materials, Vol. 31, No. 23SOLID PROPELLANTSRubber Chemistry and Technology, Vol. 92, No. 1 What's Popular Volume 34, Number 4July 2018Supplemental Materials CrossmarkInformationCopyright © 2017 by Indian Institute of Science. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft EnginesElectric MotorsJet EnginesNozzlesPropellantPropulsion and PowerRamjetRocket EngineRocket PropellantRocket PropulsionRocketrySpacecraft Propulsion KeywordsSolid Rocket PropellantsComposite Solid PropellantBurning RateComputer Aided DesignElastic ModulusHybrid Rocket MotorSelective Laser SinteringEnergetic MaterialsNozzle GeometryRocket Propulsion SystemAcknowledgmentsThe authors acknowledge the assistance of R. S. Bharath and Karandeep Singh in optimization of the propellant composition, as well as the support of the National Centre for Combustion Research and Development at the Indian Institute of Science for providing various experimental facilities.PDF Received17 April 2017Accepted19 December 2017Published online30 January 2018
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
秀丽青枫完成签到 ,获得积分10
1秒前
小怪兽不吃人完成签到,获得积分20
2秒前
yyy完成签到 ,获得积分10
5秒前
yuan关注了科研通微信公众号
6秒前
7秒前
所所应助9999采纳,获得10
7秒前
haoxin完成签到,获得积分10
7秒前
宇宙暴龙战士暴打魔法少女完成签到,获得积分10
7秒前
8秒前
9秒前
冰凝完成签到,获得积分10
9秒前
11秒前
Nhkun发布了新的文献求助60
11秒前
orixero应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
13秒前
14秒前
16秒前
16秒前
17秒前
言信果完成签到 ,获得积分10
17秒前
18秒前
陨_0614完成签到,获得积分10
19秒前
小二郎应助马家辉采纳,获得10
19秒前
沈佳琪发布了新的文献求助10
19秒前
9999完成签到,获得积分10
21秒前
23秒前
wenbo完成签到,获得积分10
23秒前
小小王完成签到 ,获得积分10
24秒前
9999发布了新的文献求助10
24秒前
25秒前
cc应助孙悟空大巨人采纳,获得50
27秒前
慕青应助May采纳,获得30
28秒前
湘澜完成签到,获得积分10
30秒前
刘刘溜完成签到 ,获得积分10
30秒前
无名完成签到,获得积分10
31秒前
zmayq完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134881
求助须知:如何正确求助?哪些是违规求助? 2785770
关于积分的说明 7774093
捐赠科研通 2441601
什么是DOI,文献DOI怎么找? 1298038
科研通“疑难数据库(出版商)”最低求助积分说明 625075
版权声明 600825