作者
Zhongrui Wang,Saumil Joshi,Sergey Savel’ev,Wenhao Song,Rivu Midya,Yunning Li,Mingyi Rao,Peng Yan,Shiva Asapu,Ye Zhuo,Hao Jiang,Peng Lin,Can Li,Jung Ho Yoon,Navnidhi K. Upadhyay,Jiaming Zhang,Miao Hu,John Paul Strachan,Mark Barnell,Qing Wu,Huaqiang Wu,R. Stanley Williams,Qiangfei Xia,J. Joshua Yang
摘要
Neuromorphic computers comprised of artificial neurons and synapses could provide a more efficient approach to implementing neural network algorithms than traditional hardware. Recently, artificial neurons based on memristors have been developed, but with limited bio-realistic dynamics and no direct interaction with the artificial synapses in an integrated network. Here we show that a diffusive memristor based on silver nanoparticles in a dielectric film can be used to create an artificial neuron with stochastic leaky integrate-and-fire dynamics and tunable integration time, which is determined by silver migration alone or its interaction with circuit capacitance. We integrate these neurons with nonvolatile memristive synapses to build fully memristive artificial neural networks. With these integrated networks, we experimentally demonstrate unsupervised synaptic weight updating and pattern classification. Leaky integrate-and-fire artificial neurons based on diffusive memristors enable unsupervised weight updates of drift-memristor synapses in an integrated convolutional neural network capable of pattern recognition.