已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Overview of deep learning in medical imaging

深度学习 人工智能 卷积神经网络 计算机科学 机器学习 医学影像学 领域(数学) 特征(语言学) 特征提取 分割 人工神经网络 医学 模式识别(心理学) 神经影像学 医学物理学 语言学 哲学 数学 纯数学
作者
Kenji Suzuki
出处
期刊:Radiological Physics and Technology [Springer Nature]
卷期号:10 (3): 257-273 被引量:605
标识
DOI:10.1007/s12194-017-0406-5
摘要

The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
移动马桶完成签到 ,获得积分10
2秒前
TTK完成签到,获得积分10
4秒前
4秒前
光亮的半山完成签到,获得积分10
5秒前
6秒前
6秒前
孤独的采珊完成签到 ,获得积分10
8秒前
Shawn.Ho完成签到,获得积分0
9秒前
Phoebe发布了新的文献求助10
9秒前
10秒前
craftsman发布了新的文献求助10
10秒前
pumpkin完成签到 ,获得积分10
11秒前
wangsenyu完成签到,获得积分10
11秒前
11秒前
善良的焦完成签到,获得积分10
12秒前
凤凰应助Shawn.Ho采纳,获得100
14秒前
隐形曼青应助司空豁采纳,获得10
16秒前
华仔应助wangsenyu采纳,获得30
18秒前
夜阑卧听完成签到,获得积分10
19秒前
于清绝完成签到 ,获得积分10
20秒前
森淼完成签到,获得积分10
23秒前
wei完成签到,获得积分10
24秒前
火星完成签到 ,获得积分10
24秒前
Ke发布了新的文献求助10
26秒前
Lucas应助za采纳,获得30
29秒前
30秒前
土豪的摩托完成签到 ,获得积分10
30秒前
vion完成签到 ,获得积分10
33秒前
赘婿应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
穆紫应助科研通管家采纳,获得10
34秒前
赘婿应助科研通管家采纳,获得10
34秒前
穆紫应助科研通管家采纳,获得10
34秒前
小c完成签到 ,获得积分10
34秒前
Ak完成签到,获得积分10
34秒前
Rw完成签到 ,获得积分10
35秒前
婷小妹发布了新的文献求助10
36秒前
应夏山完成签到 ,获得积分10
36秒前
研友_VZG7GZ应助kalala采纳,获得10
37秒前
37秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133747
求助须知:如何正确求助?哪些是违规求助? 2784766
关于积分的说明 7768381
捐赠科研通 2440030
什么是DOI,文献DOI怎么找? 1297175
科研通“疑难数据库(出版商)”最低求助积分说明 624868
版权声明 600791