亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Overview of deep learning in medical imaging

深度学习 人工智能 卷积神经网络 计算机科学 机器学习 医学影像学 领域(数学) 特征(语言学) 特征提取 分割 人工神经网络 模式识别(心理学) 数学 语言学 哲学 纯数学
作者
Kenji Suzuki
出处
期刊:Radiological Physics and Technology [Springer Nature]
卷期号:10 (3): 257-273 被引量:843
标识
DOI:10.1007/s12194-017-0406-5
摘要

The use of machine learning (ML) has been increasing rapidly in the medical imaging field, including computer-aided diagnosis (CAD), radiomics, and medical image analysis. Recently, an ML area called deep learning emerged in the computer vision field and became very popular in many fields. It started from an event in late 2012, when a deep-learning approach based on a convolutional neural network (CNN) won an overwhelming victory in the best-known worldwide computer vision competition, ImageNet Classification. Since then, researchers in virtually all fields, including medical imaging, have started actively participating in the explosively growing field of deep learning. In this paper, the area of deep learning in medical imaging is overviewed, including (1) what was changed in machine learning before and after the introduction of deep learning, (2) what is the source of the power of deep learning, (3) two major deep-learning models: a massive-training artificial neural network (MTANN) and a convolutional neural network (CNN), (4) similarities and differences between the two models, and (5) their applications to medical imaging. This review shows that ML with feature input (or feature-based ML) was dominant before the introduction of deep learning, and that the major and essential difference between ML before and after deep learning is the learning of image data directly without object segmentation or feature extraction; thus, it is the source of the power of deep learning, although the depth of the model is an important attribute. The class of ML with image input (or image-based ML) including deep learning has a long history, but recently gained popularity due to the use of the new terminology, deep learning. There are two major models in this class of ML in medical imaging, MTANN and CNN, which have similarities as well as several differences. In our experience, MTANNs were substantially more efficient in their development, had a higher performance, and required a lesser number of training cases than did CNNs. "Deep learning", or ML with image input, in medical imaging is an explosively growing, promising field. It is expected that ML with image input will be the mainstream area in the field of medical imaging in the next few decades.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
秋日思语发布了新的文献求助10
12秒前
张燕完成签到,获得积分10
33秒前
1分钟前
在水一方完成签到 ,获得积分10
1分钟前
秋日思语发布了新的文献求助10
1分钟前
英俊的铭应助热情高跟鞋采纳,获得10
2分钟前
这学真难读下去完成签到,获得积分10
2分钟前
2分钟前
2分钟前
AixLeft完成签到 ,获得积分10
2分钟前
热情高跟鞋完成签到,获得积分10
2分钟前
2分钟前
无花果发布了新的文献求助10
2分钟前
CodeCraft应助cube半肥半瘦采纳,获得10
3分钟前
3分钟前
观众发布了新的文献求助10
4分钟前
Akim应助科研通管家采纳,获得10
4分钟前
斯文败类应助科研通管家采纳,获得10
4分钟前
Yolanda_Xu完成签到 ,获得积分10
4分钟前
星辰大海应助1762120采纳,获得10
4分钟前
orixero应助余馨怡采纳,获得10
4分钟前
5分钟前
田様应助小橘子吃傻子采纳,获得10
5分钟前
1762120发布了新的文献求助10
5分钟前
5分钟前
6分钟前
6分钟前
andrele发布了新的文献求助10
6分钟前
mengran完成签到,获得积分10
7分钟前
赫连山菡完成签到,获得积分10
7分钟前
8分钟前
sobereva完成签到,获得积分10
8分钟前
8分钟前
余馨怡发布了新的文献求助10
8分钟前
sobereva发布了新的文献求助10
9分钟前
芸栖完成签到 ,获得积分10
9分钟前
10分钟前
10分钟前
10分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5210860
求助须知:如何正确求助?哪些是违规求助? 4387506
关于积分的说明 13662882
捐赠科研通 4247463
什么是DOI,文献DOI怎么找? 2330295
邀请新用户注册赠送积分活动 1328047
关于科研通互助平台的介绍 1280842