Performance of rapid influenza H1N1 diagnostic tests: a meta‐analysis

医学 荟萃分析 内科学 预测值 大流行 2019年冠状病毒病(COVID-19) 严重急性呼吸综合征冠状病毒2型(SARS-CoV-2) 诊断试验 胃肠病学 儿科 疾病 传染病(医学专业)
作者
Haitao Chu,Eric Lofgren,M. Elizabeth Halloran,Pei Fen Kuan,Michael G. Hudgens,Stephen R. Cole
出处
期刊:Influenza and Other Respiratory Viruses [Wiley]
卷期号:6 (2): 80-86 被引量:43
标识
DOI:10.1111/j.1750-2659.2011.00284.x
摘要

Following the outbreaks of 2009 pandemic H1N1 infection, rapid influenza diagnostic tests have been used to detect H1N1 infection. However, no meta-analysis has been undertaken to assess the diagnostic accuracy when this manuscript was drafted.The literature was systematically searched to identify studies that reported the performance of rapid tests. Random effects meta-analyses were conducted to summarize the overall performance.Seventeen studies were selected with 1879 cases and 3477 non-cases. The overall sensitivity and specificity estimates of the rapid tests were 0·51 (95%CI: 0·41, 0·60) and 0·98 (95%CI: 0·94, 0·99). Studies reported heterogeneous sensitivity estimates, ranging from 0·11 to 0·88. If the prevalence was 30%, the overall positive and negative predictive values were 0·94 (95%CI: 0·85, 0·98) and 0·82 (95%CI: 0·79, 0·85). The overall specificities from different manufacturers were comparable, while there were some differences for the overall sensitivity estimates. BinaxNOW had a lower overall sensitivity of 0·39 (95%CI: 0·24, 0·57) compared with all the others (P-value <0·001), whereas QuickVue had a higher overall sensitivity of 0·57 (95%CI: 0·50, 0·63) compared with all the others (P-value = 0·005).Rapid tests have high specificity but low sensitivity and thus limited usefulness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奶糖完成签到,获得积分10
2秒前
丘比特应助浪迹天涯采纳,获得10
3秒前
5秒前
5秒前
虚幻白玉发布了新的文献求助10
6秒前
清客完成签到 ,获得积分10
6秒前
传奇3应助阳阳采纳,获得10
6秒前
8秒前
皮皮桂发布了新的文献求助10
8秒前
Hello应助无奈傲菡采纳,获得10
8秒前
故意的傲玉应助FENGHUI采纳,获得10
9秒前
10秒前
科研通AI5应助nextconnie采纳,获得10
11秒前
James完成签到,获得积分10
11秒前
12秒前
Lucas应助sun采纳,获得10
13秒前
KristenStewart完成签到,获得积分10
15秒前
过时的热狗完成签到,获得积分10
15秒前
点点完成签到,获得积分10
15秒前
Zxc发布了新的文献求助10
16秒前
涨芝士完成签到 ,获得积分10
17秒前
18秒前
无名欧文关注了科研通微信公众号
18秒前
科研123完成签到,获得积分10
20秒前
crescent完成签到 ,获得积分10
22秒前
无奈傲菡发布了新的文献求助10
22秒前
烟花应助123号采纳,获得10
25秒前
超帅的遥完成签到,获得积分10
25秒前
Zxc完成签到,获得积分10
26秒前
lbt完成签到 ,获得积分10
27秒前
yao完成签到 ,获得积分10
28秒前
28秒前
30秒前
31秒前
31秒前
doudou完成签到 ,获得积分10
31秒前
BCS完成签到,获得积分10
31秒前
领导范儿应助KYN采纳,获得10
31秒前
32秒前
独特的莫言完成签到,获得积分10
34秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849