超参数
高斯过程
光学(聚焦)
机器学习
计算机科学
边际似然
克里金
过程(计算)
人工智能
简单(哲学)
边际分布
高斯分布
算法
数学优化
数学
统计
随机变量
认识论
物理
量子力学
贝叶斯概率
哲学
光学
操作系统
标识
DOI:10.1007/978-3-540-28650-9_4
摘要
We give a basic introduction to Gaussian Process regression models. We focus on understanding the role of the stochastic process and how it is used to define a distribution over functions. We present the simple equations for incorporating training data and examine how to learn the hyperparameters using the marginal likelihood. We explain the practical advantages of Gaussian Process and end with conclusions and a look at the current trends in GP work.
科研通智能强力驱动
Strongly Powered by AbleSci AI