苹果酸发酵
酒明串珠菌
葡萄酒
发酵
化学
酿酒发酵
葡萄酒的香气
食品科学
芳香
葡萄酒故障
酿酒
乙醛
乙醇发酵
酿酒酵母
酵母
双乙酰
生物化学
酿酒酵母
乙醇
乳酸
生物
细菌
遗传学
作者
Fransisca Taniasuri,Pin‐Rou Lee,Shao‐Quan Liu
标识
DOI:10.1016/j.ijfoodmicro.2016.04.006
摘要
This study represented for the first time the impact of malolactic fermentation (MLF) induced by Oenococcus oeni and its inoculation strategies (simultaneous vs. sequential) on the fermentation performance as well as aroma compound profile of durian wine. There was no negative impact of simultaneous inoculation of O. oeni and Saccharomyces cerevisiae on the growth and fermentation kinetics of S. cerevisiae as compared to sequential fermentation. Simultaneous MLF did not lead to an excessive increase in volatile acidity as compared to sequential MLF. The kinetic changes of organic acids (i.e. malic, lactic, succinic, acetic and α-ketoglutaric acids) varied with simultaneous and sequential MLF relative to yeast alone. MLF, regardless of inoculation mode, resulted in higher production of fermentation-derived volatiles as compared to control (alcoholic fermentation only), including esters, volatile fatty acids, and terpenes, except for higher alcohols. Most indigenous volatile sulphur compounds in durian were decreased to trace levels with little differences among the control, simultaneous and sequential MLF. Among the different wines, the wine with simultaneous MLF had higher concentrations of terpenes and acetate esters while sequential MLF had increased concentrations of medium- and long-chain ethyl esters. Relative to alcoholic fermentation only, both simultaneous and sequential MLF reduced acetaldehyde substantially with sequential MLF being more effective. These findings illustrate that MLF is an effective and novel way of modulating the volatile and aroma compound profile of durian wine.
科研通智能强力驱动
Strongly Powered by AbleSci AI