模糊集
随机性
2型模糊集与系统
隶属函数
去模糊化
模糊数学
模糊数
模糊分类
数学
模糊逻辑
模糊集运算
云计算
模糊测度理论
数据挖掘
人工智能
计算机科学
统计
操作系统
作者
Hanchen Huang,Xiaojun Yang
标识
DOI:10.1142/s0218488516500112
摘要
Since Zadeh introduced fuzzy sets, a lot of extensions of this concept have been proposed, such as type-2 fuzzy sets, nonstationary fuzzy sets, and cloud models, to represent higher levels of uncertainty. This paper provides a comparative investigation of type-2 fuzzy sets, nonstationary fuzzy sets, and cloud models. Type-2 fuzzy sets study the fuzziness of the membership function (MF) using primary MF and secondary MF based on analytic mathematical methods; nonstationary fuzzy sets study the randomness of the MF using primary MF and variation function based on type-1 fuzzy sets theory; cloud models study the randomness of the distribution of samples in the universe and generate random membership grades (MGs) using two random variables based on probability and statistic mathematical methods. They all concentrate on dealing with the uncertainty of the MF or the MG which type-1 fuzzy sets do not consider, and thus have many similarities. Moreover, we find out that, the same qualitative concept “moderate amount” can be represented by an interval type-2 fuzzy set, a nonstationary fuzzy set or a normal cloud model, respectively. Then, we propose a unified mathematical expression for the interval type-2 fuzzy set, nonstationary fuzzy set and normal cloud model. On the other hand, we also find out that, the theory fundament and underlying motivations of these models are quite different. Therefore, We summarize detailed comparisons of distinctive properties of type-2 fuzzy sets, nonstationary fuzzy sets, and cloud models. Further, we study their diverse characteristics of distributions of MGs across vertical slices. The comparative investigation shows that these models are complementary to describe the uncertainty from different points of view. Thus, this paper provides a fundamental contribution and makes a basic reference for knowledge representation and other applications with uncertainty.
科研通智能强力驱动
Strongly Powered by AbleSci AI