插层(化学)
纳米材料
材料科学
纳米技术
石墨烯
兴奋剂
超导电性
能量转换
化学
光电子学
无机化学
量子力学
热力学
物理
作者
Jiayu Wan,Steven D. Lacey,Jiaqi Dai,Wenzhong Bao,Michael S. Fuhrer,Liangbing Hu
摘要
2D materials have attracted tremendous attention due to their unique physical and chemical properties since the discovery of graphene. Despite these intrinsic properties, various modification methods have been applied to 2D materials that yield even more exciting results in terms of tunable properties and device performance. Among all modification methods, intercalation of 2D materials has emerged as a particularly powerful tool: it provides the highest possible doping level and is capable of (ir)reversibly changing the phase of the material. Intercalated 2D materials exhibit extraordinary electrical transport as well as optical, thermal, magnetic, and catalytic properties, which are advantageous for optoelectronics, superconductors, thermoelectronics, catalysis and energy storage applications. The recent progress on host 2D materials, various intercalation species, and intercalation methods, as well as tunable properties and potential applications enabled by intercalation, are comprehensively reviewed.
科研通智能强力驱动
Strongly Powered by AbleSci AI