深度学习
人工智能
计算机科学
分割
领域(数学)
卷积神经网络
最先进的
图像分割
开放式研究
图像(数学)
机器学习
数据科学
数学
万维网
纯数学
作者
Geert Litjens,Thijs Kooi,Babak Ehteshami Bejnordi,Arnaud Arindra Adiyoso Setio,Francesco Ciompi,Mohsen Ghafoorian,Jeroen van der Laak,Bram van Ginneken,Clara I. Sánchez
标识
DOI:10.1016/j.media.2017.07.005
摘要
Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks. Concise overviews are provided of studies per application area: neuro, retinal, pulmonary, digital pathology, breast, cardiac, abdominal, musculoskeletal. We end with a summary of the current state-of-the-art, a critical discussion of open challenges and directions for future research.
科研通智能强力驱动
Strongly Powered by AbleSci AI