作者
Verena Thewes,Ronald Simon,Mario Hlevnjak,Magdalena Schlotter,Petra Schroeter,Kathrin V. Schmidt,Yonghe Wu,Tobias Anzeneder,W. Wang,Paul Windisch,M. Kirchgäßner,Nathaniel Melling,Niclas Kneisel,Reinhard Büttner,Ulrich Deuschle,Hans‐Peter Sinn,Andreas Schneeweiß,Stefanie Heck,Stefan Kaulfuß,Holger Hess‐Stumpp,Jürgen G. Okun,Guido Sauter,Annè E. Lykkesfeldt,Marc Zapatka,Bernhard Radlwimmer,Peter Lichter,Martje Tönjes
摘要
Antiestrogen-resistant and triple-negative breast tumors pose a serious clinical challenge because of limited treatment options. We assessed global gene expression changes in antiestrogen-sensitive compared with antiestrogen-resistant (two tamoxifen resistant and two fulvestrant resistant) MCF-7 breast cancer cell lines. The branched-chain amino acid transaminase 1 (BCAT1), which catalyzes the first step in the breakdown of branched-chain amino acids, was among the most upregulated transcripts in antiestrogen-resistant cells. Elevated BCAT1 expression was confirmed in relapsed tamoxifen-resistant breast tumor specimens. High intratumoral BCAT1 levels were associated with a reduced relapse-free survival in adjuvant tamoxifen-treated patients and overall survival in unselected patients. On a tissue microarray (n=1421), BCAT1 expression was detectable in 58% of unselected primary breast carcinomas and linked to a higher Ki-67 proliferation index, as well as histological grade. Interestingly, BCAT1 was predominantly expressed in estrogen receptor-α-negative/human epidermal growth factor receptor-2-positive (ERα-negative/HER-2-positive) and triple-negative breast cancers in independent patient cohorts. The inverse relationship between BCAT1 and ERα was corroborated in various breast cancer cell lines and pharmacological long-term depletion of ERα induced BCAT1 expression in vitro. Mechanistically, BCAT1 indirectly controlled expression of the cell cycle inhibitor p27Kip1 thereby affecting pRB. Correspondingly, phenotypic analyses using a lentiviral-mediated BCAT1 short hairpin RNA knockdown revealed that BCAT1 sustains proliferation in addition to migration and invasion and that its overexpression enhanced the capacity of antiestrogen-sensitive cells to grow in the presence of antiestrogens. Importantly, silencing of BCAT1 in an orthotopic triple-negative xenograft model resulted in a massive reduction of tumor volume in vivo, supporting our findings that BCAT1 is necessary for the growth of hormone-independent breast tumors.