亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Applications of pHLIP Technology for Cancer Imaging and Therapy

生物标志物 癌细胞 细胞质 肿瘤微环境 癌症 细胞 化学 细胞膜 细胞内 癌症研究 生物物理学 肿瘤细胞 细胞生物学 分子成像 生物化学 纳米技术 生物 材料科学 生物技术 体内 遗传学
作者
Linden C. Wyatt,Jason S. Lewis,Oleg A. Andreev,Yana K. Reshetnyak,Donald M. Engelman
出处
期刊:Trends in Biotechnology [Elsevier]
卷期号:35 (7): 653-664 被引量:99
标识
DOI:10.1016/j.tibtech.2017.03.014
摘要

pHLIP®s target cancer cells in primary tumors as well as metastases based on the acidic environment that is universal to tumor tissues. Acidity-based targeting is not diminished by the phenomena that blunt the efficacy of other biomarker-based targeting methods. pHLIPs exist as monomers and remain anchored across the membrane, leaving it intact, which distinguishes them from pore-forming and cell-penetrating peptides. A growing family of pHLIP variants gives choices for the delivery of various cargoes, including imaging agents for nuclear diagnostic imaging and fluorescence guided surgery, cell-permeable and impermeable therapeutic agents for intracellular delivery, and different types of nanoparticles. pHLIPs show promise for many medical applications, and the clinical translation of several pHLIP conjugates is currently underway. Acidity is a biomarker of cancer that is not subject to the blunting clonal selection effects that reduce the efficacy of other biomarker technologies, such as antibody targeting. The pH (low) insertion peptides (pHLIP®s) provide new opportunities for targeting acidic tissues. Through the physical mechanism of membrane-associated folding, pHLIPs are triggered by the acidic microenvironment to insert and span the membranes of tumor cells. The pHLIP platform can be applied to imaging acidic tissues, delivering cell-permeable and impermeable molecules to the cytoplasm, and promoting the cellular uptake of nanoparticles. Since acidosis is a hallmark of tumor development, progression, and aggressiveness, the pHLIP technology may prove useful in targeting cancer cells and metastases for tumor diagnosis, imaging, and therapy. Acidity is a biomarker of cancer that is not subject to the blunting clonal selection effects that reduce the efficacy of other biomarker technologies, such as antibody targeting. The pH (low) insertion peptides (pHLIP®s) provide new opportunities for targeting acidic tissues. Through the physical mechanism of membrane-associated folding, pHLIPs are triggered by the acidic microenvironment to insert and span the membranes of tumor cells. The pHLIP platform can be applied to imaging acidic tissues, delivering cell-permeable and impermeable molecules to the cytoplasm, and promoting the cellular uptake of nanoparticles. Since acidosis is a hallmark of tumor development, progression, and aggressiveness, the pHLIP technology may prove useful in targeting cancer cells and metastases for tumor diagnosis, imaging, and therapy. peptides with both hydrophobic and hydrophilic regions that insert and assemble to form pores in the cellular membrane. a peptide, typically with a strong positive charge, that binds to the phospholipids of the cell membrane and is taken up by the cell. a molecule that exhibits properties similar to those of established drugs; for example, per Lipinski's Rule of Five: no more than five hydrogen bond donors, no more than ten hydrogen bond acceptors, molecular weight <500 Da, and an octanol-water partition coefficient log P ≤5. filaments that are part of the cell cytoskeleton and contribute to structural stability and cell movement. a US Food and Drug Administration (FDA)-approved fluorescent dye used to mark blood vessels in angiography and perfusion diagnostics, but does not target the tumor itself. small molecules of RNA that have a functional role in gene expression by blocking messenger RNA translation. amino acids that are not encoded in the human genome. the ability of molecules to cross cell membranes on their own. targeting methods that rely on naturally occurring biological characteristics, such as non-intact tumor vasculature, to induce the localization of cargo within a tumor. an artificial DNA- or RNA-like molecule with a peptide backbone that forms a sequence-specific base-paired complex with DNA or RNA. pHLIP is a registered trademark. the condition that exists after surgical resection when the surgery was not successful in removing all cancerous tissue. a member of the large family of G-protein-coupled receptors that has a functional role in blood coagulation. a key enzyme that catalyzes transcription. a fluorescent dye with two pH-dependent emission peaks, making it possible to use SNARF to measure pH through spectrography or ratiometric imaging. a protein that is exposed to the blood upon tissue damage, triggering blood clot formation. the formation by a polypeptide of a helix that spans the lipid bilayer of a cellular membrane. any breast cancer that does not express the estrogen receptor, progesterone receptor, and epidermal growth factor receptor 2 (HER2/neu). Triple-negative breast cancer is difficult to treat due to the reliance of typical chemotherapies on the expression of one or more of these receptors. a family of proteins that polymerize into microtubules, which are part of the cytoskeleton and contribute to structural stability, cytoplasmic transport, cell movement, and cell division. the spread of cancer cells (metastasis) from the primary tumor site to adjacent tissue or blood. Applications of pHLIP Technology for Cancer Imaging and Therapy: (Trends in Biotechnology , 653–664, 2017)Wyatt et al.Trends in BiotechnologyNovember 30, 2017In BriefThe following declaration of interests was inadvertently omitted from the published article: Full-Text PDF
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吱吱草莓派完成签到 ,获得积分10
21秒前
bdsb完成签到,获得积分10
31秒前
852应助蔡俊辉采纳,获得10
36秒前
bamboo完成签到 ,获得积分10
37秒前
LZHWSND完成签到,获得积分10
53秒前
1分钟前
大个应助粥粥舟采纳,获得10
1分钟前
科研通AI2S应助科研小刘采纳,获得10
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
1437594843完成签到 ,获得积分10
3分钟前
3分钟前
希夷发布了新的文献求助10
3分钟前
4分钟前
4分钟前
李爱国应助希夷采纳,获得10
4分钟前
搞怪人杰发布了新的文献求助10
4分钟前
4分钟前
希夷发布了新的文献求助10
4分钟前
希夷完成签到,获得积分10
4分钟前
科研通AI2S应助疯狂的红牛采纳,获得10
4分钟前
5分钟前
东方傲儿发布了新的文献求助10
5分钟前
不胜玖完成签到 ,获得积分10
6分钟前
农学小王完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
moodlunatic发布了新的文献求助30
7分钟前
7分钟前
8分钟前
Crema发布了新的文献求助30
8分钟前
8分钟前
ZACK完成签到 ,获得积分10
9分钟前
隐形曼青应助天才小熊猫采纳,获得10
9分钟前
9分钟前
9分钟前
moodlunatic完成签到,获得积分20
9分钟前
英俊的铭应助cao采纳,获得10
10分钟前
田様应助冷酷的雁菡采纳,获得10
10分钟前
冷酷的雁菡完成签到,获得积分20
10分钟前
10分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142692
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806965
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303518
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601328