热分解法
复合数
材料科学
阳极
离子
化学工程
复合材料
电池(电)
热解
纳米技术
化学
电极
薄膜
工程类
物理化学
物理
有机化学
热力学
功率(物理)
作者
Seung Jong Lee,Hye Jin Kim,Tae Hoon Hwang,Sunghun Choi,Sung Hyeon Park,Erhan Deniz,Dae Soo Jung,Jang Wook Choi
出处
期刊:Nano Letters
[American Chemical Society]
日期:2017-02-13
卷期号:17 (3): 1870-1876
被引量:162
标识
DOI:10.1021/acs.nanolett.6b05191
摘要
Despite the high theoretical capacity, silicon (Si) anodes in lithium-ion batteries have difficulty in meeting the commercial standards in various aspects. In particular, the huge volume change of Si makes it very challenging to simultaneously achieve high initial Coulombic efficiency (ICE) and long-term cycle life. Herein, we report spray pyrolysis to prepare Si–SiOx composite using an aqueous precursor solution containing Si nanoparticles, citric acid, and sodium hydroxide (NaOH). In the precursor solution, Si nanoparticles are etched by NaOH with the production of [SiO4]4–. During the dynamic course of spray pyrolysis, [SiO4]4– transforms to SiOx matrix and citric acid decomposes to carbon surface layer with the assistance of NaOH that serves as a decomposition catalyst. As a result, a Si–SiOx composite, in which Si nanodomains are homogeneously embedded in the SiOx matrix with carbon surface layer, is generated by a one-pot process with a residence time of only 3.5 s in a flow reactor. The optimal composite structure in terms of Si domain size and Si-to-O ratio exhibited excellent electrochemical performance, such as reversible capacity of 1561.9 mAh g–1 at 0.06C rate and ICE of 80.2% and 87.9% capacity retention after 100 cycles at 1C rate.
科研通智能强力驱动
Strongly Powered by AbleSci AI