AI-assisted compressed sensing and parallel imaging sequences for MRI of patients with nasopharyngeal carcinoma: comparison of their capabilities in terms of examination time and image quality

图像质量 医学 鼻咽癌 核医学 放射科 磁共振成像 神经组阅片室 人工智能 放射治疗 图像(数学) 计算机科学 神经学 精神科
作者
Haibin Liu,Ding-tian Deng,Weilong Zeng,Yue-Kai Huang,Chunling Zheng,Xinyang Li,Hui Li,Conghua Xie,Hualiang He,Guoliang Xu
出处
期刊:European Radiology [Springer Nature]
卷期号:33 (11): 7686-7696 被引量:1
标识
DOI:10.1007/s00330-023-09742-6
摘要

To compare examination time and image quality between artificial intelligence (AI)-assisted compressed sensing (ACS) technique and parallel imaging (PI) technique in MRI of patients with nasopharyngeal carcinoma (NPC).Sixty-six patients with pathologically confirmed NPC underwent nasopharynx and neck examination using a 3.0-T MRI system. Transverse T2-weighted fast spin-echo (FSE) sequence, transverse T1-weighted FSE sequence, post-contrast transverse T1-weighted FSE sequence, and post-contrast coronal T1-weighted FSE were obtained by both ACS and PI techniques, respectively. The signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and duration of scanning of both sets of images analyzed by ACS and PI techniques were compared. The images from the ACS and PI techniques were scored for lesion detection, margin sharpness of lesions, artifacts, and overall image quality using the 5-point Likert scale.The examination time with ACS technique was significantly shorter than that with PI technique (p < 0.0001). The comparison of SNR and CNR showed that ACS technique was significantly superior with PI technique (p < 0.005). Qualitative image analysis showed that the scores of lesion detection, margin sharpness of lesions, artifacts, and overall image quality were higher in the ACS sequences than those in the PI sequences (p < 0.0001). Inter-observer agreement was evaluated for all qualitative indicators for each method, in which the results showed satisfactory-to-excellent agreement (p < 0.0001).Compared with the PI technique, the ACS technique for MR examination of NPC can not only shorten scanning time but also improve image quality.The artificial intelligence (AI)-assisted compressed sensing (ACS) technique shortens examination time for patients with nasopharyngeal carcinoma, while improving the image quality and examination success rate, which will benefit more patients.• Compared with the parallel imaging (PI) technique, the artificial intelligence (AI)-assisted compressed sensing (ACS) technique not only reduced examination time, but also improved image quality. • Artificial intelligence (AI)-assisted compressed sensing (ACS) pulls the state-of-the-art deep learning technique into the reconstruction procedure and helps find an optimal balance of imaging speed and image quality.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sophia发布了新的文献求助10
刚刚
1秒前
skylee9527发布了新的文献求助10
1秒前
小梦完成签到,获得积分10
1秒前
乐乐应助Cold-Drink-Shop采纳,获得10
1秒前
Orange应助小飞鱼采纳,获得10
2秒前
AISEASEA完成签到,获得积分10
2秒前
3秒前
hhhhhh完成签到,获得积分10
3秒前
纯真平蝶发布了新的文献求助10
3秒前
忧心的晋鹏完成签到,获得积分10
3秒前
大气的雁桃完成签到,获得积分10
4秒前
4秒前
墨白白完成签到,获得积分10
4秒前
研友_VZG7GZ应助wanghui采纳,获得10
5秒前
5秒前
5秒前
星河梦枕发布了新的文献求助10
5秒前
肖同学完成签到,获得积分10
5秒前
6秒前
HS完成签到,获得积分20
6秒前
6秒前
wy完成签到 ,获得积分10
6秒前
坚强桐完成签到,获得积分20
6秒前
大道发布了新的文献求助10
7秒前
赘婿应助星星采纳,获得10
7秒前
7秒前
Miki完成签到,获得积分10
7秒前
7秒前
Jasper应助way采纳,获得10
8秒前
xindiya完成签到,获得积分10
8秒前
小二郎应助五花肉采纳,获得10
9秒前
李德胜完成签到,获得积分10
9秒前
大地完成签到,获得积分10
9秒前
9秒前
sophia完成签到,获得积分10
9秒前
李健应助科研通管家采纳,获得10
9秒前
小猪佩奇用ak完成签到,获得积分10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 890
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3257738
求助须知:如何正确求助?哪些是违规求助? 2899561
关于积分的说明 8306743
捐赠科研通 2568802
什么是DOI,文献DOI怎么找? 1395357
科研通“疑难数据库(出版商)”最低求助积分说明 653057
邀请新用户注册赠送积分活动 630837