Drug repurposing and prediction of multiple interaction types via graph embedding

药物重新定位 计算机科学 药品 图形 药物靶点 重新调整用途 嵌入 机器学习 图嵌入 交互网络 人工智能 计算生物学 理论计算机科学 医学 药理学 生物 生物化学 基因 生态学
作者
Elmira Amiri Souri,Alicia Chenoweth,Sophia N. Karagiannis,Sophia Tsoka
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12859-023-05317-w
摘要

Abstract Background Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug–target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. Results A computational drug repurposing approach was proposed to predict novel drug–target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug–drug and protein–protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. Conclusion DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug–target–disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
maq发布了新的文献求助10
1秒前
远航完成签到,获得积分10
2秒前
小叶子完成签到,获得积分10
3秒前
4秒前
4秒前
小叶子发布了新的文献求助10
5秒前
领导范儿应助俊逸的刺猬采纳,获得10
6秒前
6秒前
满意的数据线完成签到,获得积分10
8秒前
11秒前
小蘑菇应助nuomi采纳,获得10
11秒前
shunshun51213完成签到,获得积分10
12秒前
13秒前
佳佳应助Leeny采纳,获得10
13秒前
ping发布了新的文献求助10
13秒前
13秒前
俊逸的刺猬完成签到,获得积分10
14秒前
酷波er应助maq采纳,获得10
15秒前
16秒前
李新颖发布了新的文献求助10
17秒前
阿月发布了新的文献求助10
17秒前
简化为完成签到,获得积分10
18秒前
xrq发布了新的文献求助10
19秒前
Captain发布了新的文献求助10
19秒前
Xiaoguabgguang完成签到,获得积分10
20秒前
22秒前
辽阳太子发布了新的文献求助10
22秒前
22秒前
善学以致用应助阳光姒采纳,获得30
24秒前
陈淑玲发布了新的文献求助10
24秒前
CHRIS发布了新的文献求助10
25秒前
完美世界应助香蕉书琴采纳,获得10
25秒前
SandyH完成签到 ,获得积分10
27秒前
李健应助超靓诺言采纳,获得10
27秒前
科目三应助xxxllllll采纳,获得10
30秒前
30秒前
小马甲应助CHRIS采纳,获得10
32秒前
yan发布了新的文献求助10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966777
求助须知:如何正确求助?哪些是违规求助? 3512284
关于积分的说明 11162496
捐赠科研通 3247199
什么是DOI,文献DOI怎么找? 1793690
邀请新用户注册赠送积分活动 874588
科研通“疑难数据库(出版商)”最低求助积分说明 804432