Drug repurposing and prediction of multiple interaction types via graph embedding

药物重新定位 计算机科学 药品 图形 药物靶点 重新调整用途 嵌入 机器学习 图嵌入 交互网络 人工智能 计算生物学 理论计算机科学 医学 药理学 生物 生物化学 基因 生态学
作者
Elmira Amiri Souri,Alicia Chenoweth,Sophia N. Karagiannis,Sophia Tsoka
出处
期刊:BMC Bioinformatics [Springer Nature]
卷期号:24 (1) 被引量:2
标识
DOI:10.1186/s12859-023-05317-w
摘要

Abstract Background Finding drugs that can interact with a specific target to induce a desired therapeutic outcome is key deliverable in drug discovery for targeted treatment. Therefore, both identifying new drug–target links, as well as delineating the type of drug interaction, are important in drug repurposing studies. Results A computational drug repurposing approach was proposed to predict novel drug–target interactions (DTIs), as well as to predict the type of interaction induced. The methodology is based on mining a heterogeneous graph that integrates drug–drug and protein–protein similarity networks, together with verified drug-disease and protein-disease associations. In order to extract appropriate features, the three-layer heterogeneous graph was mapped to low dimensional vectors using node embedding principles. The DTI prediction problem was formulated as a multi-label, multi-class classification task, aiming to determine drug modes of action. DTIs were defined by concatenating pairs of drug and target vectors extracted from graph embedding, which were used as input to classification via gradient boosted trees, where a model is trained to predict the type of interaction. After validating the prediction ability of DT2Vec+, a comprehensive analysis of all unknown DTIs was conducted to predict the degree and type of interaction. Finally, the model was applied to propose potential approved drugs to target cancer-specific biomarkers. Conclusion DT2Vec+ showed promising results in predicting type of DTI, which was achieved via integrating and mapping triplet drug–target–disease association graphs into low-dimensional dense vectors. To our knowledge, this is the first approach that addresses prediction between drugs and targets across six interaction types.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
奇怪的柒完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
文静的枫叶完成签到,获得积分10
2秒前
科目三应助神麒小雪采纳,获得10
2秒前
zzznznnn发布了新的文献求助10
3秒前
pbf发布了新的文献求助20
3秒前
科研通AI5应助有风采纳,获得10
4秒前
Lin完成签到,获得积分10
4秒前
科研通AI5应助肉松小贝采纳,获得10
5秒前
粉色完成签到,获得积分10
5秒前
Ll发布了新的文献求助10
5秒前
5秒前
愉快彩虹发布了新的文献求助10
6秒前
CTL完成签到,获得积分10
6秒前
6秒前
共享精神应助加减乘除采纳,获得10
6秒前
6秒前
恬恬完成签到,获得积分10
6秒前
7秒前
22发布了新的文献求助10
7秒前
aacc956发布了新的文献求助10
7秒前
7秒前
谨慎涵柏完成签到,获得积分10
8秒前
快乐的如风完成签到,获得积分10
9秒前
10秒前
吃猫的鱼完成签到,获得积分10
10秒前
脑洞疼应助润润轩轩采纳,获得10
11秒前
刘文静完成签到,获得积分10
12秒前
Southluuu发布了新的文献求助10
12秒前
chenjyuu发布了新的文献求助10
12秒前
12秒前
粗暴的仙人掌完成签到,获得积分20
12秒前
13秒前
13秒前
13秒前
logic发布了新的文献求助10
13秒前
习习应助生动的雨竹采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759