A Recommendation Algorithm Incorporating Self-Attention Mechanism and Knowledge Graph

计算机科学 推荐系统 图形 特征向量 代表(政治) 算法 数据挖掘 理论计算机科学 人工智能 机器学习 政治学 政治 法学
作者
Jingjing Hou,Yuchen Jin,Yiwen Liu,Zhang Zhenhua,Zhao Qing-hua
标识
DOI:10.1145/3581807.3581858
摘要

To address the problems of sparse data, low recommendation accuracy and poor recommendation effect in recommendation systems. In this paper, we propose a recommendation algorithm that fuses the self-attention mechanism and knowledge graph. The algorithm mainly includes recommendation module, knowledge graph feature learning, and self-attention. In this algorithm recommendation system module, a user and an item are input, and the input item vector and entity vector are embedded in the self-attention module, so that the feature representation of these two vectors is enhanced. The knowledge graph feature representation module maps the head entities and relations in the triad into a continuous vector space, and calculates the corresponding values through the score function. The recommendation module and the knowledge graph representation model are connected through the cross-compression unit embedded in the self-attentive mechanism. Finally, the loss of each module is calculated by a loss function. Experiments on three different publicly available datasets show that: the embedded attention mechanism module introduced can well solve the accuracy problem of the recommendation system; Secondly, the embedded attention mechanism cross-compression unit module enhances the recommendation system in which vectors are compressed in horizontal and vertical directions. Finally, through experiments comparing other algorithms, the proposed method improves the recommendation accuracy and effectiveness in the recommendation system.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
含灵巨贼完成签到,获得积分10
1秒前
LL发布了新的文献求助50
1秒前
FashionBoy应助夏墨采纳,获得10
2秒前
GuangliangGao完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
xjc23发布了新的文献求助10
3秒前
3秒前
Adonis发布了新的文献求助10
4秒前
5秒前
言语完成签到 ,获得积分10
5秒前
Jared应助YY采纳,获得10
5秒前
ldy关闭了ldy文献求助
5秒前
sanyue完成签到,获得积分10
5秒前
情怀应助小王采纳,获得10
6秒前
zhouzhaoyi发布了新的文献求助10
7秒前
贪玩的幻姬完成签到 ,获得积分10
8秒前
搜集达人应助jin晨采纳,获得10
8秒前
9秒前
9秒前
LeezZZZ发布了新的文献求助10
10秒前
10秒前
求助人员发布了新的文献求助50
10秒前
10秒前
铁观音完成签到,获得积分20
11秒前
11秒前
在水一方应助Vater采纳,获得10
11秒前
可爱的函函应助月月鸟采纳,获得10
11秒前
nibaba完成签到,获得积分10
12秒前
KIKI发布了新的文献求助10
12秒前
12秒前
12秒前
tutu发布了新的文献求助10
13秒前
13秒前
SciGPT应助玥越采纳,获得10
13秒前
13秒前
zhangshixian完成签到,获得积分10
13秒前
XSY完成签到,获得积分10
14秒前
小天发布了新的文献求助10
14秒前
ZY发布了新的文献求助30
15秒前
科目三应助默默莫莫采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5551876
求助须知:如何正确求助?哪些是违规求助? 4636641
关于积分的说明 14645054
捐赠科研通 4578515
什么是DOI,文献DOI怎么找? 2510927
邀请新用户注册赠送积分活动 1486179
关于科研通互助平台的介绍 1457464