Anomaly Detection for Data from Unmanned Systems via Improved Graph Neural Networks with Attention Mechanism

异常检测 计算机科学 数据挖掘 可扩展性 人工智能 图形 时间序列 异常(物理) 模式识别(心理学) 机器学习 理论计算机科学 凝聚态物理 数据库 物理
作者
Guoying Wang,Jizhou Ai,Lufeng Mo,Xiaomei Yi,Peng Wu,Xiaoping Wu,Linjun Kong
出处
期刊:Drones [MDPI AG]
卷期号:7 (5): 326-326 被引量:9
标识
DOI:10.3390/drones7050326
摘要

Anomaly detection has an important impact on the development of unmanned aerial vehicles, and effective anomaly detection is fundamental to their utilization. Traditional anomaly detection discriminates anomalies for single-dimensional factors of sensing data, which often performs poorly in multidimensional data scenarios due to weak computational scalability and the problem of dimensional catastrophe, ignoring potential correlations between sensing data and some important information of certain characteristics. In order to capture the correlation of multidimensional sensing data and improve the accuracy of anomaly detection effectively, GTAF, an anomaly detection model for multivariate sequences based on an improved graph neural network with a transformer, a graph attention mechanism and a multi-channel fusion mechanism, is proposed in this paper. First, we added a multi-channel transformer structure for intrinsic pattern extraction of different data. Then, we combined the multi-channel transformer structure with GDN’s original graph attention network (GAT) to attain better capture of features of time series, better learning of dependencies between time series and hence prediction of future values of adjacent time series. Finally, we added a multi-channel data fusion module, which utilizes channel attention to integrate global information and upgrade anomaly detection accuracy. The results of experiments show that the average accuracies of GTAF, the anomaly detection model proposed in this paper, are 92.83% and 96.59% on two datasets from unmanned systems, respectively, which has higher accuracy and computational efficiency compared with other methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刘玉欣完成签到 ,获得积分10
刚刚
elang发布了新的文献求助10
1秒前
神勇契完成签到,获得积分10
2秒前
3秒前
4秒前
6秒前
8秒前
8秒前
梦_筱彩完成签到 ,获得积分10
8秒前
Revision发布了新的文献求助10
9秒前
11秒前
CAOHOU应助Intro采纳,获得10
13秒前
13秒前
14秒前
Jasper应助yuan采纳,获得10
15秒前
15秒前
17秒前
Revision完成签到,获得积分10
18秒前
adbr完成签到,获得积分10
18秒前
19秒前
杨振发布了新的文献求助10
20秒前
FashionBoy应助风趣的惜天采纳,获得10
20秒前
常常嘻嘻发布了新的文献求助10
20秒前
刘十一发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助10
23秒前
一杯沧海完成签到 ,获得积分10
24秒前
24秒前
qizhang发布了新的文献求助10
25秒前
26秒前
qxxxxx应助ZHY采纳,获得30
26秒前
z_发布了新的文献求助20
27秒前
闰土完成签到 ,获得积分10
27秒前
书羽完成签到,获得积分10
28秒前
28秒前
doomedQL完成签到,获得积分10
29秒前
29秒前
30秒前
星辰大海应助虚心的西牛采纳,获得10
30秒前
宋呵呵完成签到,获得积分10
30秒前
量子星尘发布了新的文献求助10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734970
求助须知:如何正确求助?哪些是违规求助? 5357733
关于积分的说明 15328255
捐赠科研通 4879430
什么是DOI,文献DOI怎么找? 2621934
邀请新用户注册赠送积分活动 1571143
关于科研通互助平台的介绍 1527931