Anomaly Detection for Data from Unmanned Systems via Improved Graph Neural Networks with Attention Mechanism

异常检测 计算机科学 数据挖掘 可扩展性 人工智能 图形 时间序列 异常(物理) 模式识别(心理学) 机器学习 理论计算机科学 凝聚态物理 数据库 物理
作者
Guoying Wang,Jizhou Ai,Lufeng Mo,Xiaomei Yi,Peng Wu,Xiaoping Wu,Linjun Kong
出处
期刊:Drones [MDPI AG]
卷期号:7 (5): 326-326 被引量:9
标识
DOI:10.3390/drones7050326
摘要

Anomaly detection has an important impact on the development of unmanned aerial vehicles, and effective anomaly detection is fundamental to their utilization. Traditional anomaly detection discriminates anomalies for single-dimensional factors of sensing data, which often performs poorly in multidimensional data scenarios due to weak computational scalability and the problem of dimensional catastrophe, ignoring potential correlations between sensing data and some important information of certain characteristics. In order to capture the correlation of multidimensional sensing data and improve the accuracy of anomaly detection effectively, GTAF, an anomaly detection model for multivariate sequences based on an improved graph neural network with a transformer, a graph attention mechanism and a multi-channel fusion mechanism, is proposed in this paper. First, we added a multi-channel transformer structure for intrinsic pattern extraction of different data. Then, we combined the multi-channel transformer structure with GDN’s original graph attention network (GAT) to attain better capture of features of time series, better learning of dependencies between time series and hence prediction of future values of adjacent time series. Finally, we added a multi-channel data fusion module, which utilizes channel attention to integrate global information and upgrade anomaly detection accuracy. The results of experiments show that the average accuracies of GTAF, the anomaly detection model proposed in this paper, are 92.83% and 96.59% on two datasets from unmanned systems, respectively, which has higher accuracy and computational efficiency compared with other methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄之云发布了新的文献求助10
刚刚
tiandadida完成签到,获得积分10
1秒前
所所应助健壮的尔烟采纳,获得10
1秒前
sunhanwen关注了科研通微信公众号
1秒前
2秒前
2秒前
gswwc发布了新的文献求助10
7秒前
chengll发布了新的文献求助10
7秒前
酷波er应助端庄之云采纳,获得10
11秒前
12秒前
BJ_whc完成签到,获得积分10
13秒前
007完成签到 ,获得积分10
13秒前
爆米花应助顺利的白昼采纳,获得10
14秒前
K珑完成签到,获得积分10
14秒前
sunhanwen发布了新的文献求助10
14秒前
bkagyin应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得10
17秒前
乐乐应助科研通管家采纳,获得10
17秒前
打打应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
17秒前
NexusExplorer应助科研通管家采纳,获得10
17秒前
天天快乐应助科研通管家采纳,获得10
17秒前
大模型应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
Akim应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
Owen应助科研通管家采纳,获得10
18秒前
科研通AI2S应助cindy采纳,获得10
18秒前
端庄之云完成签到,获得积分20
19秒前
断棍豪斯完成签到,获得积分10
19秒前
拓跋康完成签到,获得积分10
22秒前
冷傲菠萝完成签到 ,获得积分10
22秒前
高高白曼舞完成签到,获得积分10
23秒前
24秒前
善良的路灯完成签到,获得积分10
25秒前
调皮汽车完成签到 ,获得积分10
25秒前
高分求助中
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3165336
求助须知:如何正确求助?哪些是违规求助? 2816368
关于积分的说明 7912456
捐赠科研通 2475983
什么是DOI,文献DOI怎么找? 1318487
科研通“疑难数据库(出版商)”最低求助积分说明 632171
版权声明 602388