电解质
离子电导率
材料科学
电化学
离子液体
锂(药物)
离子键合
化学工程
纳米技术
聚合物
聚合物电解质
离子
化学
电极
复合材料
有机化学
医学
物理化学
工程类
内分泌学
催化作用
作者
Kai Li,Jifeng Wang,Yuanyuan Song,Ying Wang
标识
DOI:10.1038/s41467-023-38493-7
摘要
Abstract As essential components of ionic polymer electrolytes (IPEs), ionic liquids (ILs) with high ionic conductivity and wide electrochemical window are promising candidates to enable safe and high-energy-density lithium metal batteries (LMBs). Here, we describe a machine learning workflow embedded with quantum calculation and graph convolutional neural network to discover potential ILs for IPEs. By selecting subsets of the recommended ILs, combining with a rigid-rod polyelectrolyte and a lithium salt, we develop a series of thin (~50 μm) and robust (>200 MPa) IPE membranes. The Li|IPEs|Li cells exhibit ultrahigh critical-current-density (6 mA cm −2 ) at 80 °C. The Li|IPEs|LiFePO 4 (10.3 mg cm −2 ) cells deliver outstanding capacity retention in 350 cycles (>96% at 0.5C; >80% at 2C), fast charge/discharge capability (146 mAh g −1 at 3C) and excellent efficiency (>99.92%). This performance is rarely reported by other single-layer polymer electrolytes without any flammable organics for LMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI