亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Occlusion-Aware Road Extraction Network for High-Resolution Remote Sensing Imagery

遥感 计算机科学 萃取(化学) 图像分辨率 人工智能 计算机视觉 地质学 化学 色谱法
作者
Ruoyu Yang,Yanfei Zhong,Yinhe Liu,Xiaoyan Lu,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-16 被引量:4
标识
DOI:10.1109/tgrs.2024.3387945
摘要

Road occlusion seriously affects the connectivity of extracted roads, and has a negative effect in practical applications. The dense road occlusion problem is caused by high-rise buildings and street trees, and is a more serious and unique problem than simple occlusion caused by low buildings and scattered trees. The existing methods mainly solve the road occlusion problem by enhancing the encoder ability to capture the long connectivity feature of roads. Unfortunately, the existing methods can only solve small and sparse road occlusion situations, and they cannot deal with the dense road occlusions caused by dense high-rise buildings or trees. In this article, to solve the dense road occlusion problem, the occlusion-aware road extraction network, namely OARENet, is proposed for road extraction from high-resolution remote sensing imagery. In OARENet, an occlusion-aware decoder (OADecoder) is designed by explicit modeling the texture feature for road regions with dense occlusions. The OADecoder is made up of a regular occlusion-aware (ROA) module and a stochastic occlusion-aware (SOA) module. The ROA module is implemented by adopting different dilation rates to fit the texture feature in the semantic feature maps. The SOA module is proposed by designing stochastic convolutions to adaptively fit the spatial details of road regions with dense occlusions. In order to evaluate the dense occlusion problem, a dense occlusion road dataset (JHWV) was built and annotated. The experimental results obtained on the DeepGlobe dataset, the newly built JHWV dataset, and large-scale urban images demonstrate the superiority of OARENet, especially when faced with a dense road occlusion situation. Code has been made available at: https://github.com/WanderRainy/OARENet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
22秒前
兜里没糖了完成签到 ,获得积分10
23秒前
liam完成签到,获得积分10
24秒前
yunyuqu发布了新的文献求助30
26秒前
28秒前
FashionBoy应助科研通管家采纳,获得10
31秒前
书虫发布了新的文献求助10
32秒前
秦111完成签到 ,获得积分10
39秒前
科研通AI2S应助lpp采纳,获得10
48秒前
1分钟前
1分钟前
1分钟前
程风破浪发布了新的文献求助10
1分钟前
1分钟前
且从容完成签到,获得积分10
1分钟前
luyee发布了新的文献求助30
1分钟前
1分钟前
五花肉发布了新的文献求助10
1分钟前
HuanLiu应助FMT采纳,获得20
1分钟前
程风破浪完成签到,获得积分10
1分钟前
FMT给FMT的求助进行了留言
1分钟前
盛夏之末完成签到,获得积分10
2分钟前
2分钟前
可爱的函函应助逝水无痕采纳,获得10
2分钟前
2分钟前
小熊饼干完成签到,获得积分10
2分钟前
zhouzy完成签到 ,获得积分20
2分钟前
葛藟萦藤发布了新的文献求助10
3分钟前
遇上就这样吧完成签到,获得积分0
3分钟前
3分钟前
大意的晓亦完成签到 ,获得积分10
3分钟前
morena发布了新的文献求助10
3分钟前
3分钟前
3分钟前
英俊的铭应助ljw采纳,获得10
3分钟前
鲁丁丁完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
ljw发布了新的文献求助10
3分钟前
善学以致用应助morena采纳,获得10
3分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
彭城银.延安时期中国共产党对外传播研究--以新华社为例[D].2024 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3655556
求助须知:如何正确求助?哪些是违规求助? 3218495
关于积分的说明 9724324
捐赠科研通 2927007
什么是DOI,文献DOI怎么找? 1602933
邀请新用户注册赠送积分活动 755854
科研通“疑难数据库(出版商)”最低求助积分说明 733592