亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Are Mixture-of-Modality-Experts Transformers Robust to Missing Modality During Training and Inferring?

模态(人机交互) 人工智能 变压器 计算机科学 心理学 工程类 电气工程 电压
作者
Yan Gao,Tong Xu,Enhong Chen
出处
期刊:IFIP advances in information and communication technology 卷期号:: 157-172
标识
DOI:10.1007/978-3-031-57808-3_12
摘要

It is commonly seen that the imperfect multi-modal data with missing modality appears in realistic application scenarios, which usually break the data completeness assumption of multi-modal analysis. Therefore, large efforts in multi-modal learning communities have been made on the robust solution for modality-missing data. Recently, pre-trained models based on Mixture-of-Modality-Experts (MoME) Transformers have been proposed, which achieved competitive performance in various downstream tasks, by utilizing different experts of feed-forward networks for single/multi modal inputs. One natural question arises: are Mixture-of-Modality-Experts Transformers robust to missing modality? To that end, in this paper, we conduct a deep investigation on MoME Transformer under the missing modality problem. Specifically, we propose a novel multi-task learning strategy, which leverages a uniform model to handle missing modalities during training and inference. In this way, the MoME Transformer will be empowered with robustness to missing modality. To validate the effectiveness of our proposed method, we conduct extensive experiments on three popular datasets, which indicate our method could outperform the state-of-the-art (SOTA) methods with a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linchen完成签到,获得积分10
3秒前
ylhy3完成签到,获得积分10
3秒前
Lucas应助相俊杰采纳,获得10
4秒前
6秒前
科研通AI6应助彭日晓采纳,获得30
13秒前
小古完成签到,获得积分10
13秒前
13秒前
聪慧芷巧完成签到,获得积分10
17秒前
浮游应助科研通管家采纳,获得10
18秒前
YifanWang应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
脑洞疼应助科研通管家采纳,获得10
18秒前
YifanWang应助科研通管家采纳,获得30
18秒前
浮游应助科研通管家采纳,获得10
18秒前
orixero应助科研通管家采纳,获得10
18秒前
18秒前
思源应助科研通管家采纳,获得10
18秒前
22秒前
天雨流芳完成签到 ,获得积分10
23秒前
Sieg完成签到 ,获得积分10
23秒前
小轩发布了新的文献求助10
24秒前
24秒前
25秒前
26秒前
刻苦小鸭子完成签到,获得积分10
28秒前
发100篇SCI发布了新的文献求助10
31秒前
小轩完成签到,获得积分10
34秒前
34秒前
121关闭了121文献求助
35秒前
121关闭了121文献求助
35秒前
自然的清涟完成签到,获得积分10
35秒前
哭泣的丝完成签到 ,获得积分10
37秒前
瓜6发布了新的文献求助10
41秒前
瓜6发布了新的文献求助10
41秒前
hui完成签到 ,获得积分10
41秒前
科研通AI6应助重重采纳,获得10
43秒前
发100篇SCI完成签到,获得积分10
43秒前
清脆的迎松完成签到,获得积分20
46秒前
linchen发布了新的文献求助10
47秒前
研友_nEoEy8完成签到,获得积分10
49秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Active-site design in Cu-SSZ-13 curbs toxic hydrogen cyanide emissions 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5463110
求助须知:如何正确求助?哪些是违规求助? 4567902
关于积分的说明 14311936
捐赠科研通 4493710
什么是DOI,文献DOI怎么找? 2461843
邀请新用户注册赠送积分活动 1450876
关于科研通互助平台的介绍 1426037