已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Are Mixture-of-Modality-Experts Transformers Robust to Missing Modality During Training and Inferring?

模态(人机交互) 人工智能 变压器 计算机科学 心理学 工程类 电气工程 电压
作者
Yan Gao,Tong Xu,Enhong Chen
出处
期刊:IFIP advances in information and communication technology 卷期号:: 157-172
标识
DOI:10.1007/978-3-031-57808-3_12
摘要

It is commonly seen that the imperfect multi-modal data with missing modality appears in realistic application scenarios, which usually break the data completeness assumption of multi-modal analysis. Therefore, large efforts in multi-modal learning communities have been made on the robust solution for modality-missing data. Recently, pre-trained models based on Mixture-of-Modality-Experts (MoME) Transformers have been proposed, which achieved competitive performance in various downstream tasks, by utilizing different experts of feed-forward networks for single/multi modal inputs. One natural question arises: are Mixture-of-Modality-Experts Transformers robust to missing modality? To that end, in this paper, we conduct a deep investigation on MoME Transformer under the missing modality problem. Specifically, we propose a novel multi-task learning strategy, which leverages a uniform model to handle missing modalities during training and inference. In this way, the MoME Transformer will be empowered with robustness to missing modality. To validate the effectiveness of our proposed method, we conduct extensive experiments on three popular datasets, which indicate our method could outperform the state-of-the-art (SOTA) methods with a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
conghuiqu完成签到,获得积分10
7秒前
周周发布了新的文献求助10
8秒前
feeuoo发布了新的文献求助10
9秒前
9秒前
11秒前
坚强幼晴完成签到,获得积分10
13秒前
雨过天晴完成签到 ,获得积分10
14秒前
fff关闭了fff文献求助
14秒前
Gb发布了新的文献求助10
15秒前
在水一方应助周周采纳,获得10
16秒前
zqzqz发布了新的文献求助10
18秒前
Ava应助ambition采纳,获得10
26秒前
完美世界应助sss采纳,获得10
27秒前
AAA发布了新的文献求助10
27秒前
28秒前
28秒前
Lucas应助诚心八宝粥采纳,获得30
28秒前
我爱科研完成签到 ,获得积分10
29秒前
29秒前
红枣枣枣发布了新的文献求助10
30秒前
香蕉觅云应助科研通管家采纳,获得30
30秒前
1111完成签到 ,获得积分10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
31秒前
周周发布了新的文献求助10
31秒前
Dr大壮完成签到,获得积分10
31秒前
复杂觅山完成签到 ,获得积分10
32秒前
33秒前
35秒前
35秒前
37秒前
39秒前
duancarol发布了新的文献求助10
40秒前
40秒前
SciGPT应助manbaobao采纳,获得10
41秒前
42秒前
yyyyyyyyjx发布了新的文献求助10
45秒前
吕布骑狗完成签到,获得积分10
47秒前
高分求助中
Comprehensive natural products III : chemistry and biology 3000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
Zeitschrift für Orient-Archäologie 500
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3346644
求助须知:如何正确求助?哪些是违规求助? 2973290
关于积分的说明 8658745
捐赠科研通 2653712
什么是DOI,文献DOI怎么找? 1453317
科研通“疑难数据库(出版商)”最低求助积分说明 672815
邀请新用户注册赠送积分活动 662753