Are Mixture-of-Modality-Experts Transformers Robust to Missing Modality During Training and Inferring?

模态(人机交互) 人工智能 变压器 计算机科学 心理学 工程类 电气工程 电压
作者
Yan Gao,Tong Xu,Enhong Chen
出处
期刊:IFIP advances in information and communication technology 卷期号:: 157-172
标识
DOI:10.1007/978-3-031-57808-3_12
摘要

It is commonly seen that the imperfect multi-modal data with missing modality appears in realistic application scenarios, which usually break the data completeness assumption of multi-modal analysis. Therefore, large efforts in multi-modal learning communities have been made on the robust solution for modality-missing data. Recently, pre-trained models based on Mixture-of-Modality-Experts (MoME) Transformers have been proposed, which achieved competitive performance in various downstream tasks, by utilizing different experts of feed-forward networks for single/multi modal inputs. One natural question arises: are Mixture-of-Modality-Experts Transformers robust to missing modality? To that end, in this paper, we conduct a deep investigation on MoME Transformer under the missing modality problem. Specifically, we propose a novel multi-task learning strategy, which leverages a uniform model to handle missing modalities during training and inference. In this way, the MoME Transformer will be empowered with robustness to missing modality. To validate the effectiveness of our proposed method, we conduct extensive experiments on three popular datasets, which indicate our method could outperform the state-of-the-art (SOTA) methods with a large margin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1111完成签到,获得积分20
刚刚
完美世界应助烂漫雪曼采纳,获得10
1秒前
冷艳莛完成签到,获得积分10
1秒前
3秒前
ffw1发布了新的文献求助10
4秒前
5秒前
Jasper应助聂白晴采纳,获得10
5秒前
wdddr发布了新的文献求助10
6秒前
研友_8WdzPL发布了新的文献求助10
6秒前
qql完成签到,获得积分10
6秒前
Oreaee完成签到,获得积分10
7秒前
守岸人完成签到,获得积分10
8秒前
三九发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助50
8秒前
10秒前
ffw1完成签到,获得积分10
10秒前
12秒前
13秒前
lijiaqi完成签到 ,获得积分10
13秒前
14秒前
张晟辉完成签到,获得积分20
15秒前
小高完成签到,获得积分10
15秒前
127完成签到,获得积分10
16秒前
科研通AI2S应助谢涛采纳,获得10
16秒前
16秒前
xuan发布了新的文献求助10
17秒前
三九完成签到,获得积分20
17秒前
牛马人生发布了新的文献求助10
18秒前
Owen应助RRR采纳,获得10
19秒前
伊叶之丘完成签到 ,获得积分10
19秒前
张晟辉发布了新的文献求助30
19秒前
20秒前
吴妮妮发布了新的文献求助10
20秒前
周鑫完成签到,获得积分10
21秒前
Liu发布了新的文献求助10
22秒前
伶俐小甜瓜关注了科研通微信公众号
22秒前
bob完成签到,获得积分20
22秒前
烂漫雪曼完成签到,获得积分10
22秒前
牛马人生完成签到,获得积分10
23秒前
科研通AI5应助刘刘佳采纳,获得10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5142593
求助须知:如何正确求助?哪些是违规求助? 4340821
关于积分的说明 13518386
捐赠科研通 4180828
什么是DOI,文献DOI怎么找? 2292600
邀请新用户注册赠送积分活动 1293261
关于科研通互助平台的介绍 1235765