An acoustic emission identification model for train axle fatigue cracks based on Deep Belief Network

鉴定(生物学) 声发射 结构工程 计算机科学 汽车工程 声学 工程类 物理 植物 生物
作者
利明 若林,Xiaowen Tang,Xiaoxiao Zhu,Xinyuan Yu,Tianlong Bi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076125-076125
标识
DOI:10.1088/1361-6501/ad3b30
摘要

Abstract Railway axles are safety-critical components of the railroad rolling stock and the consequences of possible in-service failures can have a huge impact. Axle fatigue cracks are relatively common defects during train operation, but how to intelligently identify axle fatigue cracks in running trains is still a great challenge. In order to identify axle fatigue cracks more intelligently, the problem that needs to be solved is how to overcome the manual extraction of features by manual experience as well as shallow networks. Therefore, in this paper, an acoustic emission signal identification method based on deep belief networks (DBNs) for axle fatigue cracks is proposed. In this method, a DBN model is constructed. The axle fatigue crack acoustic emission signal data were obtained by our designed acquisition experimental setup, and these data were used to verify the accuracy of the constructed DBN network model identification. The experimental results show that the method of identification of axle fatigue cracks based on DBN, compared with the traditional fault diagnosis method, eliminates the operations of data feature extraction, feature screening, feature fusion, etc and makes complete use of all the information contained in the fault data. The method can not only identify fatigue crack signals but also has a high identification rate of fatigue cracks at different stages. In the axle fatigue crack acoustic emission identification field, it can be seen that the proposed method in this paper will be a promising approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
eric曾发布了新的文献求助10
1秒前
1秒前
嘻嘻嘻完成签到,获得积分10
2秒前
2秒前
carrier_hc完成签到,获得积分10
2秒前
冰安发布了新的文献求助10
3秒前
4秒前
5秒前
5秒前
5秒前
在水一方应助桑桑采纳,获得10
6秒前
6秒前
充电宝应助通~采纳,获得10
7秒前
liberation完成签到 ,获得积分10
7秒前
牛牛123完成签到 ,获得积分10
7秒前
8秒前
8秒前
罗实发布了新的文献求助10
9秒前
9秒前
大模型应助LL采纳,获得10
9秒前
33333发布了新的文献求助10
9秒前
自觉秋发布了新的文献求助10
10秒前
啱啱完成签到,获得积分10
10秒前
在水一方应助呆萌的秋天采纳,获得10
10秒前
暴打小猪仔完成签到,获得积分10
10秒前
王w完成签到 ,获得积分10
11秒前
12秒前
13秒前
南瓜咸杏完成签到,获得积分10
13秒前
陈甸甸完成签到,获得积分10
13秒前
韦威风发布了新的文献求助10
14秒前
14秒前
king完成签到,获得积分10
14秒前
qweerrtt发布了新的文献求助10
15秒前
余三浪完成签到,获得积分10
15秒前
16秒前
lixoii发布了新的文献求助20
16秒前
豌豆射手发布了新的文献求助10
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762