清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An acoustic emission identification model for train axle fatigue cracks based on Deep Belief Network

鉴定(生物学) 声发射 结构工程 计算机科学 汽车工程 声学 工程类 物理 植物 生物
作者
利明 若林,Xiaowen Tang,Xiaoxiao Zhu,Xinyuan Yu,Tianlong Bi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076125-076125
标识
DOI:10.1088/1361-6501/ad3b30
摘要

Abstract Railway axles are safety-critical components of the railroad rolling stock and the consequences of possible in-service failures can have a huge impact. Axle fatigue cracks are relatively common defects during train operation, but how to intelligently identify axle fatigue cracks in running trains is still a great challenge. In order to identify axle fatigue cracks more intelligently, the problem that needs to be solved is how to overcome the manual extraction of features by manual experience as well as shallow networks. Therefore, in this paper, an acoustic emission signal identification method based on deep belief networks (DBNs) for axle fatigue cracks is proposed. In this method, a DBN model is constructed. The axle fatigue crack acoustic emission signal data were obtained by our designed acquisition experimental setup, and these data were used to verify the accuracy of the constructed DBN network model identification. The experimental results show that the method of identification of axle fatigue cracks based on DBN, compared with the traditional fault diagnosis method, eliminates the operations of data feature extraction, feature screening, feature fusion, etc and makes complete use of all the information contained in the fault data. The method can not only identify fatigue crack signals but also has a high identification rate of fatigue cracks at different stages. In the axle fatigue crack acoustic emission identification field, it can be seen that the proposed method in this paper will be a promising approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chichenglin完成签到 ,获得积分0
7秒前
Zj发布了新的文献求助10
8秒前
游艺完成签到 ,获得积分10
9秒前
11秒前
胡国伦完成签到 ,获得积分10
25秒前
Lucas应助cjh采纳,获得10
25秒前
量子星尘发布了新的文献求助10
39秒前
44秒前
Zhazah完成签到 ,获得积分10
45秒前
cjh发布了新的文献求助10
47秒前
凉面完成签到 ,获得积分10
53秒前
田様应助wangzixian采纳,获得10
54秒前
cjh完成签到,获得积分20
58秒前
YifanWang应助科研通管家采纳,获得10
1分钟前
田様应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得10
1分钟前
YifanWang应助科研通管家采纳,获得20
1分钟前
wwe完成签到,获得积分10
1分钟前
rumengzhuo完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
yan琰完成签到,获得积分10
2分钟前
习月阳完成签到,获得积分10
2分钟前
DJ_Tokyo完成签到,获得积分0
2分钟前
阳炎完成签到,获得积分10
2分钟前
王翎力完成签到,获得积分10
2分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
脑洞疼应助科研通管家采纳,获得30
3分钟前
YifanWang应助科研通管家采纳,获得20
3分钟前
红箭烟雨完成签到,获得积分10
3分钟前
widesky777完成签到 ,获得积分0
3分钟前
zhilianghui0807完成签到 ,获得积分10
3分钟前
XFX想有钱完成签到,获得积分10
3分钟前
nicolaslcq完成签到,获得积分10
3分钟前
yindi1991完成签到 ,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
LeoBigman完成签到 ,获得积分10
4分钟前
共享精神应助kentmars采纳,获得10
4分钟前
波西米亚完成签到,获得积分10
4分钟前
呱同志完成签到 ,获得积分10
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957101
求助须知:如何正确求助?哪些是违规求助? 3503115
关于积分的说明 11111305
捐赠科研通 3234212
什么是DOI,文献DOI怎么找? 1787802
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802292