已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An acoustic emission identification model for train axle fatigue cracks based on Deep Belief Network

鉴定(生物学) 声发射 结构工程 计算机科学 汽车工程 声学 工程类 物理 植物 生物
作者
利明 若林,Xiaowen Tang,Xiaoxiao Zhu,Xinyuan Yu,Tianlong Bi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076125-076125
标识
DOI:10.1088/1361-6501/ad3b30
摘要

Abstract Railway axles are safety-critical components of the railroad rolling stock and the consequences of possible in-service failures can have a huge impact. Axle fatigue cracks are relatively common defects during train operation, but how to intelligently identify axle fatigue cracks in running trains is still a great challenge. In order to identify axle fatigue cracks more intelligently, the problem that needs to be solved is how to overcome the manual extraction of features by manual experience as well as shallow networks. Therefore, in this paper, an acoustic emission signal identification method based on deep belief networks (DBNs) for axle fatigue cracks is proposed. In this method, a DBN model is constructed. The axle fatigue crack acoustic emission signal data were obtained by our designed acquisition experimental setup, and these data were used to verify the accuracy of the constructed DBN network model identification. The experimental results show that the method of identification of axle fatigue cracks based on DBN, compared with the traditional fault diagnosis method, eliminates the operations of data feature extraction, feature screening, feature fusion, etc and makes complete use of all the information contained in the fault data. The method can not only identify fatigue crack signals but also has a high identification rate of fatigue cracks at different stages. In the axle fatigue crack acoustic emission identification field, it can be seen that the proposed method in this paper will be a promising approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
五香麻辣P完成签到,获得积分10
2秒前
lamry发布了新的文献求助10
2秒前
星远发布了新的文献求助10
6秒前
科研通AI2S应助普通人采纳,获得10
6秒前
7秒前
8秒前
Owen应助王睿采纳,获得10
9秒前
科研通AI2S应助王睿采纳,获得10
9秒前
柔弱元瑶应助王睿采纳,获得10
9秒前
10秒前
12秒前
12秒前
耍酷绿真完成签到,获得积分20
13秒前
14秒前
reegdsgsfd完成签到,获得积分10
14秒前
lovestudy发布了新的文献求助10
15秒前
Aurora发布了新的文献求助10
16秒前
17秒前
黎明发布了新的文献求助10
18秒前
充电宝应助普通人采纳,获得10
18秒前
研友_VZG7GZ应助xuqianlan采纳,获得10
19秒前
19秒前
mark完成签到,获得积分10
20秒前
22秒前
nature完成签到 ,获得积分10
24秒前
耍酷绿真发布了新的文献求助10
26秒前
26秒前
27秒前
30秒前
31秒前
xuqianlan发布了新的文献求助10
31秒前
Hello应助zjujirenjie采纳,获得10
32秒前
泥巴发布了新的文献求助10
32秒前
清爽的雨竹完成签到 ,获得积分10
34秒前
34秒前
35秒前
35秒前
36秒前
Yuna发布了新的文献求助30
37秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3234297
求助须知:如何正确求助?哪些是违规求助? 2880629
关于积分的说明 8216470
捐赠科研通 2548256
什么是DOI,文献DOI怎么找? 1377635
科研通“疑难数据库(出版商)”最低求助积分说明 647925
邀请新用户注册赠送积分活动 623302