已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An acoustic emission identification model for train axle fatigue cracks based on Deep Belief Network

鉴定(生物学) 声发射 结构工程 计算机科学 汽车工程 声学 工程类 物理 植物 生物
作者
利明 若林,Xiaowen Tang,Xiaoxiao Zhu,Xinyuan Yu,Tianlong Bi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076125-076125 被引量:2
标识
DOI:10.1088/1361-6501/ad3b30
摘要

Abstract Railway axles are safety-critical components of the railroad rolling stock and the consequences of possible in-service failures can have a huge impact. Axle fatigue cracks are relatively common defects during train operation, but how to intelligently identify axle fatigue cracks in running trains is still a great challenge. In order to identify axle fatigue cracks more intelligently, the problem that needs to be solved is how to overcome the manual extraction of features by manual experience as well as shallow networks. Therefore, in this paper, an acoustic emission signal identification method based on deep belief networks (DBNs) for axle fatigue cracks is proposed. In this method, a DBN model is constructed. The axle fatigue crack acoustic emission signal data were obtained by our designed acquisition experimental setup, and these data were used to verify the accuracy of the constructed DBN network model identification. The experimental results show that the method of identification of axle fatigue cracks based on DBN, compared with the traditional fault diagnosis method, eliminates the operations of data feature extraction, feature screening, feature fusion, etc and makes complete use of all the information contained in the fault data. The method can not only identify fatigue crack signals but also has a high identification rate of fatigue cracks at different stages. In the axle fatigue crack acoustic emission identification field, it can be seen that the proposed method in this paper will be a promising approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
zoey123发布了新的文献求助10
3秒前
咕咕唧唧完成签到,获得积分10
3秒前
我不是哪吒完成签到 ,获得积分10
7秒前
舒心幻竹完成签到 ,获得积分10
7秒前
thelime应助咕咕唧唧采纳,获得10
8秒前
9秒前
夏宇发布了新的文献求助10
9秒前
sansan发布了新的文献求助30
9秒前
dongge完成签到,获得积分10
9秒前
大个应助聪慧鸭子采纳,获得10
11秒前
诸葛小哥哥完成签到 ,获得积分0
18秒前
Big胆完成签到,获得积分10
19秒前
丘比特应助zoey123采纳,获得10
20秒前
quan应助哦啦啦采纳,获得10
20秒前
orixero应助白河夜船采纳,获得10
21秒前
刘富贵完成签到,获得积分10
22秒前
大马哈鱼发布了新的文献求助10
24秒前
慕青应助sansan采纳,获得30
26秒前
阳光的樱应助哦啦啦采纳,获得10
30秒前
FashionBoy应助哦啦啦采纳,获得10
30秒前
呆呆完成签到,获得积分10
30秒前
管靖易完成签到 ,获得积分10
30秒前
33秒前
gywangcn完成签到,获得积分10
33秒前
34秒前
花生完成签到,获得积分10
35秒前
feiCheung完成签到 ,获得积分10
38秒前
完美世界应助哦啦啦采纳,获得10
39秒前
善学以致用应助哦啦啦采纳,获得10
39秒前
乐乐应助哦啦啦采纳,获得10
39秒前
JamesPei应助哦啦啦采纳,获得10
39秒前
orixero应助哦啦啦采纳,获得30
40秒前
万能图书馆应助哦啦啦采纳,获得10
40秒前
40秒前
在水一方应助哦啦啦采纳,获得30
40秒前
宇宇完成签到 ,获得积分0
40秒前
斯文败类应助哦啦啦采纳,获得10
40秒前
搜集达人应助哦啦啦采纳,获得10
40秒前
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875420
求助须知:如何正确求助?哪些是违规求助? 6516396
关于积分的说明 15676969
捐赠科研通 4993328
什么是DOI,文献DOI怎么找? 2691456
邀请新用户注册赠送积分活动 1633729
关于科研通互助平台的介绍 1591368