An acoustic emission identification model for train axle fatigue cracks based on Deep Belief Network

鉴定(生物学) 声发射 结构工程 计算机科学 汽车工程 声学 工程类 物理 植物 生物
作者
利明 若林,Xiaowen Tang,Xiaoxiao Zhu,Xinyuan Yu,Tianlong Bi
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (7): 076125-076125 被引量:2
标识
DOI:10.1088/1361-6501/ad3b30
摘要

Abstract Railway axles are safety-critical components of the railroad rolling stock and the consequences of possible in-service failures can have a huge impact. Axle fatigue cracks are relatively common defects during train operation, but how to intelligently identify axle fatigue cracks in running trains is still a great challenge. In order to identify axle fatigue cracks more intelligently, the problem that needs to be solved is how to overcome the manual extraction of features by manual experience as well as shallow networks. Therefore, in this paper, an acoustic emission signal identification method based on deep belief networks (DBNs) for axle fatigue cracks is proposed. In this method, a DBN model is constructed. The axle fatigue crack acoustic emission signal data were obtained by our designed acquisition experimental setup, and these data were used to verify the accuracy of the constructed DBN network model identification. The experimental results show that the method of identification of axle fatigue cracks based on DBN, compared with the traditional fault diagnosis method, eliminates the operations of data feature extraction, feature screening, feature fusion, etc and makes complete use of all the information contained in the fault data. The method can not only identify fatigue crack signals but also has a high identification rate of fatigue cracks at different stages. In the axle fatigue crack acoustic emission identification field, it can be seen that the proposed method in this paper will be a promising approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
简单山水完成签到,获得积分10
1秒前
可爱的函函应助yinli采纳,获得10
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
何大大发布了新的文献求助10
7秒前
杨杨发布了新的文献求助30
8秒前
tianliyan发布了新的文献求助10
8秒前
英俊的铭应助Pluto采纳,获得10
9秒前
10秒前
117完成签到,获得积分10
10秒前
深情安青应助独特亦旋采纳,获得10
11秒前
隐形曼青应助小小采纳,获得10
12秒前
kayla发布了新的文献求助10
13秒前
十八鱼发布了新的文献求助10
13秒前
Jasper应助何大大采纳,获得10
14秒前
15秒前
归寻完成签到 ,获得积分10
16秒前
周曦完成签到,获得积分10
16秒前
19秒前
xjc完成签到,获得积分10
19秒前
天下完成签到,获得积分10
19秒前
佳露完成签到,获得积分10
20秒前
浮游应助孟__采纳,获得10
20秒前
量子星尘发布了新的文献求助10
22秒前
Lucas应助xhy采纳,获得10
22秒前
研友_ndvmV8完成签到,获得积分10
23秒前
Zz完成签到 ,获得积分10
23秒前
24秒前
24秒前
yyy完成签到,获得积分10
24秒前
彭于彦祖应助科研通管家采纳,获得100
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
英俊的铭应助SDNUDRUG采纳,获得50
25秒前
李爱国应助科研通管家采纳,获得10
25秒前
25秒前
大个应助科研通管家采纳,获得10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049311
求助须知:如何正确求助?哪些是违规求助? 4277364
关于积分的说明 13333527
捐赠科研通 4092014
什么是DOI,文献DOI怎么找? 2239446
邀请新用户注册赠送积分活动 1246303
关于科研通互助平台的介绍 1174881