心理学
预测(人工智能)
认知心理学
功能磁共振成像
辅助电机区
认知
大脑活动与冥想
动作(物理)
神经影像学
顶叶下小叶
楔前
运动表象
神经科学
脑电图
计算机科学
人工智能
脑-机接口
物理
量子力学
作者
Qingchun Ji,Likai Liu,Yingzhi Lu,Chenglin Zhou,Yingying Wang
标识
DOI:10.1016/j.neuroscience.2024.03.016
摘要
An exceptional ability to accurately anticipate an opponent's action is paramount for competitive athletes and highlights their experiential mastery. Despite conventional associations of action observation with specific brain regions, neuroimaging discrepancies persist. To explore the brain regions and neural mechanisms undergirding action anticipation, we compared distinct brain activation patterns involved in table tennis serve anticipation of expert table tennis athletes vs. non-experts by using both univariate analysis and multivoxel pattern analysis (MVPA). We collected functional magnetic resonance imaging data from 29 table tennis experts and 34 non-experts as they pressed a button to predict the trajectory of a ball in a table tennis serve video truncated at the moment of racket-ball contact vs. pressing any button while viewing a static image of the first video frame. MVPA was applied to assess whether it could accurately differentiate experts from non-experts. MVPA results indicated moderate accuracy (90.48%) for differentiating experts from non-experts. Brain regions contributing most to the differentiation included the left cerebellum, the vermis, the right middle temporal pole, the inferior parietal cortex, the bilateral paracentral lobule, and the left supplementary motor area. The findings suggest that brain regions associated with cognitive conflict monitoring and motor cognition contribute to the action anticipation ability of expert table tennis players.
科研通智能强力驱动
Strongly Powered by AbleSci AI