Analyzing Customer Sentiments in Genshin Impact: A Business Intelligence Perspective on Player Perception

透视图(图形) 感知 计算机科学 商业智能 数据科学 知识管理 人工智能 心理学 神经科学
作者
Dian Kurnianingrum,Andrian Wijaya,Isma Addi Bin Jumri,Mila Andria Savitri,Evawaty Tanuar,Mulyani Karmagatri
标识
DOI:10.1109/ictbig59752.2023.10456098
摘要

Customer perception plays a pivotal role in determining the success of a game in the competitive market landscape. It encompasses how players perceive various aspects of the game, including its mechanics, visuals, story, character design, and overall experiential quality. In data analysis, sentiment analysis has emerged as a powerful tool for gaining valuable insights into customer perception. This research aims to employ sophisticated sentiment analysis techniques to understand customer perception in the context of Genshin Impact comprehensively. Through sentiment analysis, this study explores the intricate relationship between customer perception and player sentiments expressed concerning Genshin Impact. An analysis of categorized tweets reveals significant sentiment patterns associated with using specific words. Negative sentiment is observed in tweets containing words such as "lazy," "retired," "uninstalled," and "sad," indicating the presence of unfavorable content. Conversely, positive sentiment is associated with words like "play," which holds the highest frequency in positive keywords. Genshin Impact players use this term to express their enjoyment and satisfaction from engaging with the game. Additional positive keywords include "interesting," "funny," "gacha" (a term related to acquiring characters in the game), "lore," and "characters." By leveraging sentiment analysis techniques, this research contributes to a comprehensive understanding of customer perception in Genshin Impact. The findings shed light on the prevailing sentiments of players and provide insights into the factors contributing to positive and negative perceptions of the game.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
风趣访卉完成签到,获得积分10
1秒前
嘻嘻嘻完成签到 ,获得积分10
1秒前
Ruanchengyu发布了新的文献求助10
4秒前
7秒前
7秒前
9秒前
研友_LX66qZ发布了新的文献求助10
11秒前
13秒前
yyauthor完成签到,获得积分10
16秒前
wanci应助QI采纳,获得10
16秒前
Yolanda完成签到 ,获得积分10
18秒前
愤怒的卓越完成签到,获得积分10
20秒前
21秒前
霖霖向前冲完成签到 ,获得积分10
21秒前
23秒前
25秒前
小马甲应助坚强擎汉采纳,获得10
26秒前
李健应助甜蜜的世德采纳,获得10
26秒前
27秒前
DQY发布了新的文献求助10
29秒前
31秒前
卡司发布了新的文献求助10
32秒前
Yilam完成签到,获得积分10
32秒前
酷波er应助Yo采纳,获得10
35秒前
子车茗应助DQY采纳,获得10
35秒前
35秒前
菠萝炒蛋加饭完成签到 ,获得积分10
36秒前
俏皮鸵鸟发布了新的文献求助10
36秒前
37秒前
nt完成签到,获得积分10
37秒前
昏睡的绿海完成签到,获得积分10
38秒前
烟花应助卡卡西采纳,获得10
39秒前
40秒前
40秒前
42秒前
开心完成签到 ,获得积分10
43秒前
44秒前
45秒前
楚寅完成签到 ,获得积分10
55秒前
56秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299860
求助须知:如何正确求助?哪些是违规求助? 2934706
关于积分的说明 8470318
捐赠科研通 2608238
什么是DOI,文献DOI怎么找? 1424137
科研通“疑难数据库(出版商)”最低求助积分说明 661847
邀请新用户注册赠送积分活动 645578