Potential Prediction in Aqueous Organic Redox-targeting Flow Batteries: DFT Calculation and Experimental Validation

材料科学 氧化还原 水溶液 流量(数学) 纳米技术 化学工程 化学物理 计算化学 机械 物理化学 冶金 化学 物理 工程类
作者
Sida Rong,Jin Ma,Hang Zhang,Juezhi Yu,Tidong Wang,Yichong Cai,Zheng Han,Y.N. Ji
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:69: 103389-103389 被引量:1
标识
DOI:10.1016/j.ensm.2024.103389
摘要

Aqueous organic redox flow batteries (AORFBs) face challenges of low energy density, which can be addressed by the strategy of redox-targeting (RT) reaction integrating solid materials (SMs) with redox mediators (RMs). However, the potential matching between SM and RM is demanding and complex. In this work, we establish a precise density functional theory (DFT) protocol to predict redox potential in RT-AORFB with anthraquinone-2,7-disulfonic acid (AQDS) derivatives as RM and poly(N-anthraquinoyl pyrrole) (PAQPy) as SM. Theoretical redox potentials are calculated from the Gibbs free energy (GFE) of various molecular models. The results suggest a precise potential match for 1,8-dihydroxyanthraquinone-2,7-disulfonic acid (1,8-DHAQDS) and PAQPy (-1.08 V and -1.09 V vs. SHE). Additionally, hydrogen bonding is involved to make simulation results more realistic, demonstrating a positive potential shift with increased GFE difference for both AQDS derivatives and PAQPy. To further elucidate the influencing mechanism of hydrogen bonding, electrostatic potential (ESP) and HOMO-LUMO gap are integrated together with GFE. The results indicate the introduction of hydrogen bonding results in extended distance for electron tunneling and a larger HOMO-LUMO gap, leading to higher GFE difference and a positive potential shift. Remarkably, results of experimental validations agree well with theoretical potential calculation. Based on predictions results, the RT-AORFB is successfully constructed with the well-matched 1,8-DHAQDS and PAQPy, exhibiting a 3.86-fold capacity enhancement compared to blank AORFB with 1,8-DHAQDS. The integrated DFT approach with GFE, ESP and HOMO-LUMO gap in this work emerges as a promising method for accurately predicting redox potentials in RT systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助世界尽头采纳,获得10
刚刚
echolan发布了新的文献求助10
1秒前
SID完成签到,获得积分10
1秒前
中九完成签到 ,获得积分10
1秒前
Rrr完成签到,获得积分10
1秒前
hehuan0520完成签到,获得积分10
1秒前
1秒前
打打应助chinning采纳,获得10
1秒前
桐桐应助wangyanyan采纳,获得10
2秒前
2秒前
zzznznnn发布了新的文献求助10
2秒前
jogrgr发布了新的文献求助10
3秒前
sun发布了新的文献求助10
3秒前
布鲁鲁发布了新的文献求助10
3秒前
自信晟睿完成签到,获得积分10
3秒前
酷波er应助哒哒采纳,获得10
4秒前
4秒前
沉默乐荷完成签到,获得积分10
4秒前
rstorz应助皮尤尤采纳,获得10
4秒前
sweetbearm应助小离采纳,获得10
4秒前
何青岚关注了科研通微信公众号
5秒前
doudou完成签到,获得积分20
5秒前
李健的小迷弟应助潦草采纳,获得10
5秒前
6秒前
6秒前
6秒前
柒八染完成签到,获得积分10
6秒前
wsljc134完成签到,获得积分20
6秒前
7秒前
善良香岚完成签到,获得积分20
7秒前
7秒前
7秒前
123发布了新的文献求助10
7秒前
7秒前
不安太阳完成签到,获得积分10
8秒前
t_suo完成签到,获得积分10
8秒前
bioinforiver完成签到,获得积分10
8秒前
乐观跳跳糖完成签到,获得积分10
8秒前
8秒前
WxChen发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759