HWLane: HW-Transformer for Lane Detection

变压器 计算机科学 电气工程 工程类 电压
作者
Jing Zhao,Zengyu Qiu,Huiqin Hu,Shiliang Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9321-9331 被引量:6
标识
DOI:10.1109/tits.2024.3386531
摘要

Lane detection is one of the most fundamental tasks in autonomous driving perception, but it still faces many challenges in some special driving scenarios. For example, in dazzling light, crowded roads, etc., lane detection is very dependent on surrounding visual cues. Previous segmentation-based lane detection methods have not paid enough attention to the surrounding visual range, resulting in poor performance. In this paper, we design a novel lane detection network namely HW-Transformer, which is based on row and column multi-head self-attention. It restricts the attention only to their respective rows and columns, and transfers information across rows and columns by intersection features. In this way, the attention to the visual range around the lane is greatly expanded, and the communication of global information can be achieved through intersecting features. In addition, we further propose a self-attention knowledge distillation (SAKD) method for the Transformer model, where higher-level attention guides lower-level attention to learn. SAKD not only helps to improve the performance of lane detection, but also has universality in better learning semantic features from general images. Extensive experiments on BDD100K, TuSimple, CULane, and VIL100 datasets demonstrate that our method outperforms the state-of-the-art segmentation-based lane detection methods. We also apply the proposed SAKD to DeiT-tiny, and it achieves 1.51 Top-1 accuracy improvement on ImageNet-1K dataset. Our code will be available at https://github.com/Cuibaby/HWLane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
1秒前
1秒前
机智的天蓉完成签到 ,获得积分10
1秒前
2秒前
2秒前
Passion完成签到,获得积分10
2秒前
山山以川发布了新的文献求助10
3秒前
3秒前
KOBE94FU完成签到,获得积分10
3秒前
3秒前
4秒前
MJJJ完成签到,获得积分10
4秒前
4秒前
陈陈发布了新的文献求助10
5秒前
烟花应助泡泡汽水采纳,获得10
5秒前
科研通AI6应助zoushiyi采纳,获得10
6秒前
归尘发布了新的文献求助10
6秒前
Passion发布了新的文献求助10
7秒前
7秒前
luck完成签到,获得积分10
7秒前
熊研研发布了新的文献求助30
7秒前
Jasper应助科研的神龙猫采纳,获得10
7秒前
7秒前
赘婿应助ly浩采纳,获得10
7秒前
顾矜应助干昕慈采纳,获得10
8秒前
庾稀发布了新的文献求助10
8秒前
8秒前
9秒前
yckbz发布了新的文献求助10
9秒前
luck发布了新的文献求助10
9秒前
123456完成签到,获得积分10
11秒前
Jasper应助郑大大采纳,获得10
11秒前
彳亍发布了新的文献求助10
11秒前
11秒前
111完成签到,获得积分10
12秒前
紫薇发布了新的文献求助10
12秒前
啦啦咔嘞完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637066
求助须知:如何正确求助?哪些是违规求助? 4742587
关于积分的说明 14997522
捐赠科研通 4795278
什么是DOI,文献DOI怎么找? 2561882
邀请新用户注册赠送积分活动 1521380
关于科研通互助平台的介绍 1481488