HWLane: HW-Transformer for Lane Detection

变压器 计算机科学 电气工程 工程类 电压
作者
Jing Zhao,Zengyu Qiu,Huiqin Hu,Shiliang Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9321-9331 被引量:3
标识
DOI:10.1109/tits.2024.3386531
摘要

Lane detection is one of the most fundamental tasks in autonomous driving perception, but it still faces many challenges in some special driving scenarios. For example, in dazzling light, crowded roads, etc., lane detection is very dependent on surrounding visual cues. Previous segmentation-based lane detection methods have not paid enough attention to the surrounding visual range, resulting in poor performance. In this paper, we design a novel lane detection network namely HW-Transformer, which is based on row and column multi-head self-attention. It restricts the attention only to their respective rows and columns, and transfers information across rows and columns by intersection features. In this way, the attention to the visual range around the lane is greatly expanded, and the communication of global information can be achieved through intersecting features. In addition, we further propose a self-attention knowledge distillation (SAKD) method for the Transformer model, where higher-level attention guides lower-level attention to learn. SAKD not only helps to improve the performance of lane detection, but also has universality in better learning semantic features from general images. Extensive experiments on BDD100K, TuSimple, CULane, and VIL100 datasets demonstrate that our method outperforms the state-of-the-art segmentation-based lane detection methods. We also apply the proposed SAKD to DeiT-tiny, and it achieves 1.51 Top-1 accuracy improvement on ImageNet-1K dataset. Our code will be available at https://github.com/Cuibaby/HWLane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hexagram发布了新的文献求助10
刚刚
飞奔向你发布了新的文献求助30
刚刚
1秒前
刘佳会发布了新的文献求助10
2秒前
SciGPT应助学术丁真采纳,获得10
2秒前
2秒前
Orange应助winna采纳,获得10
4秒前
辛勤的乌发布了新的文献求助10
6秒前
酷波er应助HXY采纳,获得200
6秒前
哈哈哈发布了新的文献求助10
7秒前
华仔应助夏天采纳,获得10
10秒前
星辰大海应助沉海采纳,获得30
11秒前
shbkmy发布了新的文献求助30
11秒前
12秒前
深情安青应助肯瑞恩哭哭采纳,获得10
15秒前
脑洞疼应助Tangyartie采纳,获得10
17秒前
YYY发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
20秒前
fuje发布了新的文献求助10
20秒前
学术丁真发布了新的文献求助10
20秒前
lin应助左丘白桃采纳,获得10
22秒前
Muhammad发布了新的文献求助10
23秒前
YYY完成签到,获得积分10
23秒前
夏天发布了新的文献求助10
24秒前
充电宝应助刘述采纳,获得10
25秒前
大模型应助mg采纳,获得10
26秒前
26秒前
灼灼朗朗完成签到,获得积分10
27秒前
28秒前
搜集达人应助感动的广缘采纳,获得10
29秒前
29秒前
量子星尘发布了新的文献求助30
30秒前
柔弱的如容关注了科研通微信公众号
30秒前
浅言完成签到 ,获得积分10
30秒前
35秒前
35秒前
Hexagram发布了新的文献求助10
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Effective Learning and Mental Wellbeing 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3976126
求助须知:如何正确求助?哪些是违规求助? 3520340
关于积分的说明 11202586
捐赠科研通 3256847
什么是DOI,文献DOI怎么找? 1798509
邀请新用户注册赠送积分活动 877645
科研通“疑难数据库(出版商)”最低求助积分说明 806516