HWLane: HW-Transformer for Lane Detection

变压器 计算机科学 电气工程 工程类 电压
作者
Jing Zhao,Zengyu Qiu,Huiqin Hu,Shiliang Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9321-9331 被引量:6
标识
DOI:10.1109/tits.2024.3386531
摘要

Lane detection is one of the most fundamental tasks in autonomous driving perception, but it still faces many challenges in some special driving scenarios. For example, in dazzling light, crowded roads, etc., lane detection is very dependent on surrounding visual cues. Previous segmentation-based lane detection methods have not paid enough attention to the surrounding visual range, resulting in poor performance. In this paper, we design a novel lane detection network namely HW-Transformer, which is based on row and column multi-head self-attention. It restricts the attention only to their respective rows and columns, and transfers information across rows and columns by intersection features. In this way, the attention to the visual range around the lane is greatly expanded, and the communication of global information can be achieved through intersecting features. In addition, we further propose a self-attention knowledge distillation (SAKD) method for the Transformer model, where higher-level attention guides lower-level attention to learn. SAKD not only helps to improve the performance of lane detection, but also has universality in better learning semantic features from general images. Extensive experiments on BDD100K, TuSimple, CULane, and VIL100 datasets demonstrate that our method outperforms the state-of-the-art segmentation-based lane detection methods. We also apply the proposed SAKD to DeiT-tiny, and it achieves 1.51 Top-1 accuracy improvement on ImageNet-1K dataset. Our code will be available at https://github.com/Cuibaby/HWLane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西貝发布了新的文献求助10
刚刚
CodeCraft应助朴实的南露采纳,获得10
刚刚
情怀应助xxaqs采纳,获得10
刚刚
李爱国应助nieziyun采纳,获得10
刚刚
领导范儿应助wuran采纳,获得10
刚刚
龙凌音完成签到,获得积分10
1秒前
1秒前
zhou完成签到,获得积分20
1秒前
2秒前
Raskye完成签到,获得积分10
2秒前
先生范发布了新的文献求助10
2秒前
MWSURE完成签到,获得积分10
2秒前
Ashley完成签到,获得积分10
2秒前
2秒前
LYSM发布了新的文献求助10
2秒前
大胆听莲完成签到 ,获得积分10
2秒前
FlipFlops发布了新的文献求助10
3秒前
烟花应助科研通管家采纳,获得20
3秒前
3秒前
英俊的铭应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
Lucas应助斯文的寒凝采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
懒骨头兄应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
所所应助科研通管家采纳,获得10
4秒前
EROS完成签到,获得积分10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
在水一方应助科研通管家采纳,获得10
4秒前
zzz完成签到,获得积分10
4秒前
田様应助科研通管家采纳,获得10
4秒前
顾瑶发布了新的文献求助10
4秒前
小鹿发布了新的文献求助10
4秒前
只争朝夕应助科研通管家采纳,获得10
4秒前
Hello应助科研通管家采纳,获得10
4秒前
Ava应助科研通管家采纳,获得10
5秒前
丘比特应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629957
求助须知:如何正确求助?哪些是违规求助? 4721200
关于积分的说明 14971845
捐赠科研通 4787915
什么是DOI,文献DOI怎么找? 2556638
邀请新用户注册赠送积分活动 1517713
关于科研通互助平台的介绍 1478320