HWLane: HW-Transformer for Lane Detection

变压器 计算机科学 电气工程 工程类 电压
作者
Jing Zhao,Zengyu Qiu,Huiqin Hu,Shiliang Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9321-9331 被引量:6
标识
DOI:10.1109/tits.2024.3386531
摘要

Lane detection is one of the most fundamental tasks in autonomous driving perception, but it still faces many challenges in some special driving scenarios. For example, in dazzling light, crowded roads, etc., lane detection is very dependent on surrounding visual cues. Previous segmentation-based lane detection methods have not paid enough attention to the surrounding visual range, resulting in poor performance. In this paper, we design a novel lane detection network namely HW-Transformer, which is based on row and column multi-head self-attention. It restricts the attention only to their respective rows and columns, and transfers information across rows and columns by intersection features. In this way, the attention to the visual range around the lane is greatly expanded, and the communication of global information can be achieved through intersecting features. In addition, we further propose a self-attention knowledge distillation (SAKD) method for the Transformer model, where higher-level attention guides lower-level attention to learn. SAKD not only helps to improve the performance of lane detection, but also has universality in better learning semantic features from general images. Extensive experiments on BDD100K, TuSimple, CULane, and VIL100 datasets demonstrate that our method outperforms the state-of-the-art segmentation-based lane detection methods. We also apply the proposed SAKD to DeiT-tiny, and it achieves 1.51 Top-1 accuracy improvement on ImageNet-1K dataset. Our code will be available at https://github.com/Cuibaby/HWLane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
友好灵松完成签到,获得积分10
刚刚
王一博完成签到,获得积分10
1秒前
1秒前
内向的惜芹完成签到,获得积分10
1秒前
2秒前
2秒前
俭朴静竹完成签到,获得积分10
2秒前
香蕉觅云应助abynn采纳,获得10
3秒前
3秒前
3秒前
zzzz完成签到,获得积分10
3秒前
不安的秋白完成签到,获得积分10
3秒前
4秒前
清茶完成签到,获得积分10
4秒前
Owen应助甜心采纳,获得10
5秒前
可爱的函函应助蛋堡采纳,获得10
5秒前
小蘑菇应助柔弱雅彤采纳,获得10
5秒前
5秒前
KYN发布了新的文献求助10
5秒前
科研通AI5应助称心的板栗采纳,获得10
6秒前
自然的早晨完成签到 ,获得积分20
6秒前
星星完成签到,获得积分20
6秒前
6秒前
7秒前
榴莲受众发布了新的文献求助10
7秒前
7秒前
NexusExplorer应助大方的新筠采纳,获得10
7秒前
Ember完成签到 ,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
我真的不是robot完成签到,获得积分10
8秒前
9秒前
hymmm完成签到,获得积分10
9秒前
杨洋完成签到,获得积分10
9秒前
9秒前
杨情缘发布了新的文献求助10
9秒前
10秒前
深情安青应助QW采纳,获得30
10秒前
水牛完成签到,获得积分10
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095640
求助须知:如何正确求助?哪些是违规求助? 4308615
关于积分的说明 13424929
捐赠科研通 4135474
什么是DOI,文献DOI怎么找? 2265586
邀请新用户注册赠送积分活动 1268936
关于科研通互助平台的介绍 1204972