HWLane: HW-Transformer for Lane Detection

变压器 计算机科学 电气工程 工程类 电压
作者
Jing Zhao,Zengyu Qiu,Huiqin Hu,Shiliang Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9321-9331 被引量:6
标识
DOI:10.1109/tits.2024.3386531
摘要

Lane detection is one of the most fundamental tasks in autonomous driving perception, but it still faces many challenges in some special driving scenarios. For example, in dazzling light, crowded roads, etc., lane detection is very dependent on surrounding visual cues. Previous segmentation-based lane detection methods have not paid enough attention to the surrounding visual range, resulting in poor performance. In this paper, we design a novel lane detection network namely HW-Transformer, which is based on row and column multi-head self-attention. It restricts the attention only to their respective rows and columns, and transfers information across rows and columns by intersection features. In this way, the attention to the visual range around the lane is greatly expanded, and the communication of global information can be achieved through intersecting features. In addition, we further propose a self-attention knowledge distillation (SAKD) method for the Transformer model, where higher-level attention guides lower-level attention to learn. SAKD not only helps to improve the performance of lane detection, but also has universality in better learning semantic features from general images. Extensive experiments on BDD100K, TuSimple, CULane, and VIL100 datasets demonstrate that our method outperforms the state-of-the-art segmentation-based lane detection methods. We also apply the proposed SAKD to DeiT-tiny, and it achieves 1.51 Top-1 accuracy improvement on ImageNet-1K dataset. Our code will be available at https://github.com/Cuibaby/HWLane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Elite发布了新的文献求助10
刚刚
1秒前
英姑应助123采纳,获得10
1秒前
彭于晏应助漫漫采纳,获得10
1秒前
希望天下0贩的0应助guozizi采纳,获得10
2秒前
郝誉发布了新的文献求助10
2秒前
刘刘刘完成签到 ,获得积分10
2秒前
稳重盼夏发布了新的文献求助10
3秒前
zx发布了新的文献求助10
3秒前
天真之桃完成签到,获得积分10
3秒前
邓佳鑫Alan应助害羞的天真采纳,获得20
3秒前
4秒前
zjyzjyzjy发布了新的文献求助10
4秒前
wanci应助cookingmouse采纳,获得10
4秒前
4秒前
5秒前
6秒前
牛牛牛牛牛牛牛牛完成签到 ,获得积分10
6秒前
酷酷伟宸发布了新的文献求助10
7秒前
陈小明发布了新的文献求助10
7秒前
沉静傻姑发布了新的文献求助10
7秒前
法外狂徒发布了新的文献求助100
8秒前
呼吸自然发布了新的文献求助20
8秒前
小鲨鱼发布了新的文献求助10
8秒前
xinran完成签到,获得积分20
9秒前
顾矜应助狗东西采纳,获得10
9秒前
纪你巴完成签到,获得积分10
9秒前
小樊啦完成签到 ,获得积分10
11秒前
11秒前
牛大锤完成签到,获得积分10
11秒前
所所应助春风明月采纳,获得10
12秒前
七月完成签到,获得积分20
13秒前
13秒前
嘿哈哈完成签到,获得积分10
13秒前
胡俊豪发布了新的文献求助10
14秒前
14秒前
科研通AI6应助Elite采纳,获得10
14秒前
共享精神应助qiii采纳,获得10
14秒前
15秒前
向北游完成签到,获得积分10
15秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695307
求助须知:如何正确求助?哪些是违规求助? 5101268
关于积分的说明 15215811
捐赠科研通 4851665
什么是DOI,文献DOI怎么找? 2602640
邀请新用户注册赠送积分活动 1554296
关于科研通互助平台的介绍 1512277