HWLane: HW-Transformer for Lane Detection

变压器 计算机科学 电气工程 工程类 电压
作者
Jing Zhao,Zengyu Qiu,Huiqin Hu,Shiliang Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (8): 9321-9331 被引量:6
标识
DOI:10.1109/tits.2024.3386531
摘要

Lane detection is one of the most fundamental tasks in autonomous driving perception, but it still faces many challenges in some special driving scenarios. For example, in dazzling light, crowded roads, etc., lane detection is very dependent on surrounding visual cues. Previous segmentation-based lane detection methods have not paid enough attention to the surrounding visual range, resulting in poor performance. In this paper, we design a novel lane detection network namely HW-Transformer, which is based on row and column multi-head self-attention. It restricts the attention only to their respective rows and columns, and transfers information across rows and columns by intersection features. In this way, the attention to the visual range around the lane is greatly expanded, and the communication of global information can be achieved through intersecting features. In addition, we further propose a self-attention knowledge distillation (SAKD) method for the Transformer model, where higher-level attention guides lower-level attention to learn. SAKD not only helps to improve the performance of lane detection, but also has universality in better learning semantic features from general images. Extensive experiments on BDD100K, TuSimple, CULane, and VIL100 datasets demonstrate that our method outperforms the state-of-the-art segmentation-based lane detection methods. We also apply the proposed SAKD to DeiT-tiny, and it achieves 1.51 Top-1 accuracy improvement on ImageNet-1K dataset. Our code will be available at https://github.com/Cuibaby/HWLane.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Maxstein完成签到,获得积分10
1秒前
NexusExplorer应助leesen采纳,获得10
1秒前
2秒前
qianchen完成签到,获得积分10
2秒前
2秒前
寇博翔发布了新的文献求助10
2秒前
2秒前
3秒前
MySun完成签到,获得积分10
3秒前
Bethan完成签到,获得积分10
3秒前
3秒前
英姑应助sttail采纳,获得10
4秒前
健忘的芷荷完成签到,获得积分10
4秒前
机灵安白完成签到,获得积分10
5秒前
慕青应助啵啵虎采纳,获得10
5秒前
5秒前
昏睡的祥完成签到 ,获得积分10
5秒前
5秒前
ronalbo完成签到,获得积分20
5秒前
shengse发布了新的文献求助20
5秒前
Nyuki完成签到,获得积分10
6秒前
6秒前
泡泡糖完成签到 ,获得积分10
6秒前
6秒前
BK2008完成签到,获得积分10
6秒前
77发布了新的文献求助10
6秒前
7秒前
华无心完成签到,获得积分10
7秒前
香香完成签到,获得积分10
7秒前
7秒前
木木发布了新的文献求助10
7秒前
4564321完成签到,获得积分10
7秒前
苏silence发布了新的文献求助10
7秒前
炙热谷雪发布了新的文献求助10
7秒前
kulei完成签到,获得积分10
7秒前
榴莲完成签到,获得积分10
7秒前
封夜发布了新的文献求助10
7秒前
含蓄战斗机完成签到,获得积分10
8秒前
xiaoqianqian174完成签到,获得积分10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997