Optimizing Gas Pipeline Operations with Machine Learning: A Case Study of A North American Energy Company

管道(软件) 计算机科学 能量(信号处理) 制造工程 工业工程 工程类 操作系统 统计 数学
作者
S. Saboo
标识
DOI:10.2118/218564-ms
摘要

Abstract The development of the economy is directly linked to energy consumption (Ozturk 2010). As the natural gas demand continues to grow globally, optimizing gas pipeline operations becomes a critical imperative for energy companies (Evans July 2005). This is mainly because transmission cost account for 30% of the total cost of production globally (Arash Bazyar 2021). To address this challenge, natural gas pipeline operators increasingly turn to advanced technologies such as machine learning (ML) to optimize their operations, improve efficiency, and reduce costs. This paper presents a compelling case study of a North American energy company that collaborated with a leading cloud service provider to leverage a business intelligence (BI) application backed by ML algorithms to analyze historical pipeline data and optimize gas pipeline operations while minimizing greenhouse gas (GHG) emissions. The objectives of this paper are multi-fold: first, to demonstrate the efficacy of a BI application powered by ML algorithms in optimizing gas pipeline operations. Second, to showcase the transformative journey of the North American energy company in leveraging cloud-enabled ML solutions to achieve substantial operational improvements. This case study offers valuable insights into how ML can revolutionize the traditional pipeline optimization process and deliver tangible business results. Third, to discuss the building blocks of the ML solution deployed. Furthermore, fourth, to educate our readers on potential areas for further research and advancement. We also discuss challenges and considerations the industry may face in the broad adoption of ML applications. To begin, this paper explores the capacity conundrum of industry leaders in the natural gas transportation sector. It sheds light on the existing challenges where operators spend considerable time analyzing data from various sources to assess the operational capabilities of their pipelines. By delving into these challenges, this study provides a comprehensive understanding of the need for innovative approaches such as ML to address these complexities. Following this paper, this paper explores the application of AI/ML solutions in pipeline optimization within the oil and gas sector, highlighting critical use cases and the potential benefits they bring. The paper features a prominent North American energy company that confronted similar challenges in pipeline operations. Through a strategic collaboration with a leading cloud service provider, the company embarked on a digital transformation journey to optimize its pipeline operations using ML technologies. This paper elucidates the methodologies, procedures, and processes involved in successfully implementing ML algorithms and a BI application tailored to the specific needs of the energy company. The results of this case study demonstrate the remarkable outcomes achieved through the integration of ML algorithms and the BI application. The application optimizes gas throughput daily by leveraging historical pipeline data and operator knowledge, enhancing overall operational capability. Statistical models employed in the application enable anomaly detection and system optimization and provide a unified user experience. The successful deployment of this ML-driven solution has empowered operational planners to share critical data with gas control teams and field operations, ultimately optimizing maintenance schedules and maximizing asset utilization. The tangible benefits realized by the energy company include a significant increase in daily natural gas throughput volume while simultaneously achieving substantial cost savings. Lastly, we will talk about Future Directions and Potential Challenges. Specifically, how future research in optimizing gas pipeline operations with ML should explore advanced algorithms, integration with emerging technologies, and explainable models. Moreover, understand why challenges in data quality, system integration, workforce skills, and regulatory compliance must be overcome for broader industry adoption of ML in the gas pipeline sector.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妍yan完成签到,获得积分10
1秒前
研友_Z33pmZ发布了新的文献求助10
2秒前
三侠完成签到,获得积分10
2秒前
大陆完成签到,获得积分10
3秒前
冬叶完成签到,获得积分10
4秒前
什么时候毕业完成签到 ,获得积分10
6秒前
simple完成签到,获得积分10
7秒前
pauchiu完成签到,获得积分10
8秒前
曾经高跟鞋完成签到,获得积分10
9秒前
MM完成签到,获得积分10
9秒前
研友_Z33pmZ完成签到,获得积分10
9秒前
nancyzhao完成签到 ,获得积分10
10秒前
10秒前
标致善愁完成签到,获得积分10
11秒前
奋斗醉冬完成签到,获得积分10
11秒前
Hina完成签到,获得积分10
11秒前
潇洒的小鸽子完成签到,获得积分10
13秒前
嘿嘿嘿完成签到 ,获得积分10
13秒前
金www完成签到 ,获得积分10
15秒前
yuhaha完成签到,获得积分10
15秒前
爱因斯坦那个和我一样的科学家完成签到,获得积分10
16秒前
包包大人完成签到 ,获得积分10
16秒前
hh完成签到,获得积分10
17秒前
莫友安完成签到 ,获得积分10
17秒前
不配.应助衣衣采纳,获得10
18秒前
九九完成签到 ,获得积分10
19秒前
现实的听芹完成签到,获得积分10
21秒前
22秒前
liyanglin完成签到 ,获得积分10
24秒前
迷路藏鸟完成签到,获得积分10
24秒前
Serein完成签到 ,获得积分10
25秒前
郭义敏完成签到,获得积分0
25秒前
knn完成签到 ,获得积分10
26秒前
海茵完成签到,获得积分10
26秒前
Jenny应助....采纳,获得10
27秒前
mgr完成签到,获得积分10
27秒前
跳跃的访琴完成签到 ,获得积分10
27秒前
彭映梦完成签到,获得积分10
29秒前
我唉科研完成签到,获得积分10
29秒前
hwzhou10完成签到,获得积分10
30秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772143
关于积分的说明 7711360
捐赠科研通 2427548
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169