BD-YOLO: detection algorithm for high-resolution remote sensing images

高分辨率 遥感 计算机科学 分辨率(逻辑) 算法 人工智能 地质学
作者
Haitong Lou,Xingchen Liu,Lingyun Bi,Haiying Liu,Junmei Guo
出处
期刊:Physica Scripta [IOP Publishing]
卷期号:99 (6): 066003-066003 被引量:3
标识
DOI:10.1088/1402-4896/ad418f
摘要

Abstract This paper focuses on detecting extremely small targets in aerial images. Compared to common datasets, the average size of targets in remote sensing images is only 12.8 pixels, significantly smaller than those in common datasets. Therefore, directly applying existing detectors to aerial images is ineffective. To address this issue and ensure real-time performance, This paper propose BD-YOLO, which incorporates five key innovations. A dual Backbone route was proposed to maintain data integrity and achieve high-resolution aerial remote sensing detection. Additionally, a new feature fusion method was developed to comprehensively merge shallow and deep information. To supplement small-sized target information, a new network structure was proposed. The detector strategy used by BD-YOLO considers the detection accuracy of objects with different sizes. Furthermore, a lightweight method was adopted to ensure real-time performance of the algorithm. BD-YOLO outperformed YOLOv8s on the AI-TOD dataset, achieving a higher mAP by 2.4%. Similarly, on the Visdrone dataset, BD-YOLO achieved a 2.5% higher mAP compared to YOLOv8s. Additionally, on the Tinyperson dataset, BD-YOLO achieved a 0.6% higher mAP than YOLOv8s. Notably, BD-YOLO maintains real-time performance while ensuring accurate object detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nkdailingyun发布了新的文献求助10
刚刚
科研通AI6应助鞠俊哲采纳,获得10
刚刚
星辰大海应助丁二采纳,获得10
1秒前
Yong发布了新的文献求助10
2秒前
jingjing完成签到,获得积分10
4秒前
4秒前
今后应助不解释12112采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
哈哈Ye发布了新的文献求助10
8秒前
8秒前
时雨完成签到,获得积分10
8秒前
小浣熊发布了新的文献求助10
8秒前
啦啦啦啦啦完成签到,获得积分20
9秒前
刘文静发布了新的文献求助10
9秒前
ningoz给ningoz的求助进行了留言
10秒前
11秒前
研友_VZG7GZ应助aqing采纳,获得10
11秒前
12秒前
隐形曼青应助yx_cheng采纳,获得10
12秒前
13秒前
思源应助蟹蟹会说谢谢采纳,获得10
14秒前
ColdSunWu发布了新的文献求助10
14秒前
sens完成签到,获得积分10
14秒前
贾不可发布了新的文献求助10
15秒前
熊二完成签到,获得积分10
15秒前
科研通AI5应助sunyanghu369采纳,获得10
16秒前
16秒前
GlockieZhao完成签到,获得积分10
17秒前
王佳豪发布了新的文献求助10
18秒前
小浣熊完成签到,获得积分10
19秒前
HY完成签到,获得积分10
19秒前
19秒前
violetlishu发布了新的文献求助10
20秒前
21秒前
肖邦完成签到 ,获得积分10
21秒前
Hello应助ColdSunWu采纳,获得10
21秒前
22秒前
NexusExplorer应助哈哈Ye采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5070231
求助须知:如何正确求助?哪些是违规求助? 4291424
关于积分的说明 13370277
捐赠科研通 4111739
什么是DOI,文献DOI怎么找? 2251660
邀请新用户注册赠送积分活动 1256787
关于科研通互助平台的介绍 1189405