亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fitting Discrete-Time Dynamic Models Having Any Time Interval

区间(图论) 离散时间和连续时间 数学 统计 应用数学 计算机科学 组合数学
作者
Marc E. McDill,Ralph L. Amateis
出处
期刊:Forest Science [Oxford University Press]
卷期号:39 (3): 499-519 被引量:14
标识
DOI:10.1093/forestscience/39.3.499
摘要

Abstract When the desired time interval of a difference equation is not the same as the interval at which the data used to fit the equation were collected (the measurement interval), some kind of interpolation method is necessary before fitting. Linear growth assumptions, which are often used for such interpolations, are almost always inconsistent with the growth function that is estimated and can lead to biased growth projections. A more logical approach is to use the hypothesized functional form of the difference equation as the basis for interpolation. Two interpolation methods based on this approach are presented. With one method, both the interpolation and the parameter estimation steps are implemented simultaneously. The second method implements the interpolation and parameter estimation steps separately and requires repeated model fittings until consistency is obtained between both steps. The procedures are demonstrated using a tree height growth example. Results are compared with an integrated, continuous-time version of the growth model that can be fitted without interpolation. Growth projections obtained with the proposed interpolation methods are closer to the projections obtained with the integrated, continuous-time model than projections obtained with other commonly used interpolation methods. A simple Monte Carlo analysis showed that two common interpolation methods based on linear assumptions produce biased parameter estimates but failed to show any bias in the parameter estimates obtained with the proposed methods. Parameter estimates obtained with the new interpolation methods converge to limiting values as the time interval of the difference equation is shortened. These limiting values can be used as estimates of the parameters of continuous-time versions of the growth model. For. Sci. 39(3):499-519.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纯洁发布了新的文献求助10
1秒前
星际舟完成签到,获得积分10
13秒前
科目三应助ytx采纳,获得10
28秒前
nn完成签到 ,获得积分10
31秒前
36秒前
ytx发布了新的文献求助10
42秒前
科研通AI5应助科研通管家采纳,获得10
1分钟前
ytx发布了新的文献求助10
1分钟前
1分钟前
一城烟雨发布了新的文献求助10
1分钟前
2分钟前
一城烟雨完成签到,获得积分10
2分钟前
诚心的信封完成签到 ,获得积分10
2分钟前
科研通AI5应助入门的橙橙采纳,获得10
2分钟前
科研那些年完成签到,获得积分10
2分钟前
3分钟前
文文发布了新的文献求助10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
隐形曼青应助迪丽盐巴采纳,获得10
3分钟前
yingying完成签到 ,获得积分10
3分钟前
万能图书馆应助ytx采纳,获得10
3分钟前
3分钟前
4分钟前
迪丽盐巴发布了新的文献求助10
4分钟前
科研通AI5应助废柴采纳,获得10
4分钟前
4分钟前
迪丽盐巴完成签到,获得积分10
4分钟前
ytx发布了新的文献求助10
4分钟前
4分钟前
xinxin发布了新的文献求助10
4分钟前
4分钟前
废柴发布了新的文献求助10
4分钟前
完美世界应助xinxin采纳,获得30
4分钟前
己凡发布了新的文献求助10
4分钟前
一路微笑完成签到,获得积分10
4分钟前
4分钟前
4分钟前
卓初露完成签到 ,获得积分10
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491339
求助须知:如何正确求助?哪些是违规求助? 3077926
关于积分的说明 9151235
捐赠科研通 2770492
什么是DOI,文献DOI怎么找? 1520508
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702298