Early classification of time series data: overview, challenges, and opportunities

系列(地层学) 计算机科学 数据科学 地质学 古生物学
作者
Anshul Sharma,Ashavani Kumar,Sanjay Kumar Singh
出处
期刊:Elsevier eBooks [Elsevier]
卷期号:: 227-250
标识
DOI:10.1016/b978-0-44-313233-9.00016-3
摘要

A time series is an ordered sequence of measurements, called data points, recorded over time. Generally, the term time series refers to univariate time series, where only one variable is involved in measurements, such as the temperature of a room, the electrical activity of a patient's heart (electrocardiography), etc. If two or more variables are measured, the time series is called a multivariate time series. For example, when monitoring a patient's health, multiple variables such as temperature, pulse rate, blood pressure, and oxygen rate may be analyzed. Patient information can be captured through multiple sensors attached to the body and decisions can be made by fuzzing data collected through these sensors. Usually, time series are classified when a complete data sequence becomes available. However, time-sensitive applications greatly benefit from early classification. For instance, if a patient's disease is detected early by a series of medical observations, the cost of therapy and the length of the recovery period will be reduced. Additionally, an early diagnosis could save the patient's life by giving health practitioners more time for treatment. Several approaches have been developed to solve early classification problems in various domains, including patient monitoring, human activity recognition, drought prediction, and industrial monitoring. This chapter reviews early classification approaches considering univariate and multivariate time series and guiding future research. It also highlights the importance of data fusion and its strategies with respect to early classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蜡笔小鑫发布了新的文献求助10
刚刚
小二郎应助LisaZhuo采纳,获得30
2秒前
JamesPei应助枕安采纳,获得10
3秒前
一筐猪完成签到,获得积分10
5秒前
6秒前
mkxany发布了新的文献求助10
6秒前
hohn发布了新的文献求助10
7秒前
ZTF完成签到 ,获得积分10
8秒前
ric完成签到,获得积分10
8秒前
江123完成签到,获得积分10
9秒前
标致的幼菱完成签到,获得积分10
9秒前
11秒前
lan完成签到,获得积分20
13秒前
淡淡发布了新的文献求助10
13秒前
江123发布了新的文献求助30
14秒前
14秒前
铲屎的发布了新的文献求助10
14秒前
lan发布了新的文献求助20
17秒前
十七完成签到 ,获得积分10
19秒前
20秒前
20秒前
20秒前
1x3完成签到 ,获得积分10
21秒前
李健应助科研通管家采纳,获得10
21秒前
充电宝应助科研通管家采纳,获得10
21秒前
深情安青应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
21秒前
JamesPei应助科研通管家采纳,获得10
21秒前
小肥羊完成签到 ,获得积分10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
22秒前
桐桐应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
浮游应助科研通管家采纳,获得10
22秒前
24秒前
宋杓发布了新的文献求助10
24秒前
Shannon完成签到,获得积分10
25秒前
bobo完成签到 ,获得积分10
25秒前
浮游应助hohn采纳,获得10
26秒前
高分求助中
晶体学对称群—如何读懂和应用国际晶体学表 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5383504
求助须知:如何正确求助?哪些是违规求助? 4506481
关于积分的说明 14024839
捐赠科研通 4416230
什么是DOI,文献DOI怎么找? 2425946
邀请新用户注册赠送积分活动 1418643
关于科研通互助平台的介绍 1396922