亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Two-Dimensional InSAR Phase Unwrapping via FPA and GAU Dual Attention in ResDANet

干涉合成孔径雷达 相位展开 对偶(语法数字) 相(物质) 遥感 地质学 大地测量学 计算机科学 合成孔径雷达 光学 干涉测量 物理 艺术 文学类 量子力学
作者
Xiaomao Chen,Shanshan Zhang,Xiaofeng Qin,Jinfeng Lin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (6): 1058-1058
标识
DOI:10.3390/rs16061058
摘要

Two-dimensional phase unwrapping (2-D PU) is vital for reconstructing Earth’s surface topography and displacement from interferometric synthetic aperture radar (InSAR) data. Conventional algorithms rely on the postulate, but this assumption is often insufficient due to abrupt topographic changes and severe noise. To address this challenge, our research proposes a novel approach utilizing deep convolutional neural networks inspired by the U-Net architecture to estimate phase gradient information. Our approach involves downsampling the input data to extract crucial features, followed by upsampling to restore spatial resolution. We incorporate two attention mechanisms—feature pyramid attention (FPA) and global attention upsample (GAU)—and a residual structure in the network’s structure. Thus, we construct ResDANet (residual and dual attention net). We rigorously train ResDANet utilizing simulated datasets and employ an L1-norm objective function to minimize the disparity between unwrapped phase gradients and those calculated by ResDANet, yielding the final 2-D PU results. The network is rigorously trained using two distinct training strategies and encompassing three types of simulated datasets. ResDANet exhibits excellent robust performance and efficiency on simulated data and real data, such as China’s Three Gorges and an Italian volcano.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
梅者如西发布了新的文献求助10
刚刚
浮游应助梅者如西采纳,获得10
7秒前
科研通AI6应助梅者如西采纳,获得10
7秒前
11秒前
8464368完成签到,获得积分10
12秒前
答辩完成签到 ,获得积分10
13秒前
20秒前
24秒前
28秒前
fml完成签到,获得积分10
32秒前
辣辣完成签到,获得积分10
34秒前
安详的面包完成签到,获得积分10
35秒前
37秒前
fml发布了新的文献求助10
38秒前
42秒前
梅者如西完成签到,获得积分10
50秒前
52秒前
江枫渔火完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
1分钟前
Yuanyuan发布了新的文献求助10
1分钟前
yexu发布了新的文献求助10
1分钟前
沈惠映完成签到 ,获得积分10
1分钟前
大胆的伟宸完成签到,获得积分10
1分钟前
1分钟前
yexu完成签到,获得积分10
2分钟前
星辰大海应助大胆的伟宸采纳,获得10
2分钟前
qinghongmeng完成签到 ,获得积分20
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
虚心依白发布了新的文献求助10
2分钟前
平淡的翅膀完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650884
求助须知:如何正确求助?哪些是违规求助? 4781901
关于积分的说明 15052691
捐赠科研通 4809656
什么是DOI,文献DOI怎么找? 2572449
邀请新用户注册赠送积分活动 1528505
关于科研通互助平台的介绍 1487448