亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Robust Two-Dimensional InSAR Phase Unwrapping via FPA and GAU Dual Attention in ResDANet

干涉合成孔径雷达 相位展开 对偶(语法数字) 相(物质) 遥感 地质学 大地测量学 计算机科学 合成孔径雷达 光学 干涉测量 物理 艺术 文学类 量子力学
作者
Xiaomao Chen,Shanshan Zhang,Xiaofeng Qin,Jinfeng Lin
出处
期刊:Remote Sensing [MDPI AG]
卷期号:16 (6): 1058-1058
标识
DOI:10.3390/rs16061058
摘要

Two-dimensional phase unwrapping (2-D PU) is vital for reconstructing Earth’s surface topography and displacement from interferometric synthetic aperture radar (InSAR) data. Conventional algorithms rely on the postulate, but this assumption is often insufficient due to abrupt topographic changes and severe noise. To address this challenge, our research proposes a novel approach utilizing deep convolutional neural networks inspired by the U-Net architecture to estimate phase gradient information. Our approach involves downsampling the input data to extract crucial features, followed by upsampling to restore spatial resolution. We incorporate two attention mechanisms—feature pyramid attention (FPA) and global attention upsample (GAU)—and a residual structure in the network’s structure. Thus, we construct ResDANet (residual and dual attention net). We rigorously train ResDANet utilizing simulated datasets and employ an L1-norm objective function to minimize the disparity between unwrapped phase gradients and those calculated by ResDANet, yielding the final 2-D PU results. The network is rigorously trained using two distinct training strategies and encompassing three types of simulated datasets. ResDANet exhibits excellent robust performance and efficiency on simulated data and real data, such as China’s Three Gorges and an Italian volcano.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
氢原子完成签到,获得积分10
9秒前
38秒前
完美世界应助着急的一刀采纳,获得10
41秒前
草木完成签到,获得积分10
42秒前
zhang发布了新的文献求助10
59秒前
充电宝应助czb采纳,获得10
1分钟前
1分钟前
czb发布了新的文献求助10
1分钟前
sarmad发布了新的文献求助10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
哆啦A梦完成签到,获得积分10
2分钟前
qiqiqiqiqi完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
vavavoom发布了新的文献求助10
3分钟前
着急的一刀完成签到,获得积分10
3分钟前
3分钟前
3分钟前
miurny应助科研通管家采纳,获得10
3分钟前
慕青应助科研通管家采纳,获得10
3分钟前
vavavoom完成签到,获得积分10
3分钟前
4分钟前
4分钟前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265472
求助须知:如何正确求助?哪些是违规求助? 2905543
关于积分的说明 8334005
捐赠科研通 2575810
什么是DOI,文献DOI怎么找? 1400135
科研通“疑难数据库(出版商)”最低求助积分说明 654702
邀请新用户注册赠送积分活动 633532