Multi-scale feature adaptive fusion model for real-time detection in complex citrus orchard environments

果园 比例(比率) 特征(语言学) 人工智能 计算机科学 融合 计算机视觉 模式识别(心理学) 环境科学 遥感 地理 地图学 生物 园艺 语言学 哲学
作者
Yunfeng Zhang,Li Li,Chang-Pin Chun,Yifeng Wen,Gang Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108836-108836 被引量:13
标识
DOI:10.1016/j.compag.2024.108836
摘要

A Multi-scale Feature Adaptive Fusion model (MFAF-YOLO) for real-time detection of citrus harvesting robots in complex field environments is proposed in this study. This proposed model improves detection accuracy while meeting the lightweight requirements of consumer-level cameras. In this study, different citrus fruit varieties, sourced from two distinct devices, are classified into 'First priority', 'Second priority', and unannotated citrus. This classification strategy guides robots in sequential picking in real-field scenarios, reducing detection redundancy and diminishing the damage rate at the robot end-effector. Additionally, multiple clustering algorithms were employed to adjust the anchor box sizes of the model. The impact of dual and triple detection heads on model accuracy across diverse clustering algorithms was also explored. An innovative multi-scale feature adaptive fusion module was embedded in the model's neck section, aiming to optimize model accuracy and reduce model size. In the dataset processed with multiple augmentation techniques, the novel MFAF-YOLO model achieved the mean Average Precision (mAP) of 90.2 %, reflecting an improvement of 3.8 % compared to the original YOLOv5s model, demonstrating superior generalization capabilities. Compared with seven other mainstream models, including YOLOv4 and MobileNet-YOLOv5s, the Average Precision (AP) value of 'First priority' and 'Second priority' is 93.2 % and 87.3 %, respectively, achieved the highest AP while maintaining a better detection speed. The model size of MFAF-YOLO is reduced to 10.4 MB, marking a 26.2 % decrease relative to the lightweight YOLOv5s model. Experimental results highlight the model's strong robustness and successful attainment of an effective balance between model accuracy and lightweight. This proposed model provides theoretical support for real-time picking and harvesting decision-making of citrus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
hilapo完成签到,获得积分10
2秒前
3秒前
3秒前
小蘑菇应助动听的康乃馨采纳,获得10
3秒前
科目三应助夜王采纳,获得10
3秒前
哪位发布了新的文献求助10
3秒前
松与杉完成签到,获得积分20
4秒前
叶彤发布了新的文献求助10
4秒前
七七发布了新的文献求助10
4秒前
4秒前
ma发布了新的文献求助10
5秒前
自然的李完成签到 ,获得积分10
6秒前
1223发布了新的文献求助10
7秒前
8秒前
科研通AI5应助wudidafei采纳,获得10
9秒前
9秒前
10秒前
森宝完成签到,获得积分10
10秒前
海诺完成签到 ,获得积分10
10秒前
shy完成签到 ,获得积分10
11秒前
11秒前
accepted完成签到,获得积分10
11秒前
Owen应助1223采纳,获得10
12秒前
14秒前
夜王发布了新的文献求助10
16秒前
guishen10发布了新的文献求助10
16秒前
16秒前
搜集达人应助机智灵薇采纳,获得10
16秒前
16秒前
忧郁夏兰发布了新的文献求助20
17秒前
20秒前
20秒前
zhendemengshi发布了新的文献求助10
20秒前
wgl200212发布了新的文献求助10
20秒前
顺利的洋葱完成签到,获得积分10
21秒前
常温可乐应助橙黄橘绿采纳,获得10
21秒前
candyTT完成签到,获得积分10
21秒前
了多完成签到 ,获得积分10
22秒前
热心的幼旋完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5049114
求助须知:如何正确求助?哪些是违规求助? 4277221
关于积分的说明 13333105
捐赠科研通 4091866
什么是DOI,文献DOI怎么找? 2239302
邀请新用户注册赠送积分活动 1246171
关于科研通互助平台的介绍 1174771