亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-scale feature adaptive fusion model for real-time detection in complex citrus orchard environments

果园 比例(比率) 特征(语言学) 人工智能 计算机科学 融合 计算机视觉 模式识别(心理学) 环境科学 遥感 地理 地图学 生物 园艺 语言学 哲学
作者
Yunfeng Zhang,Li Li,Chang-Pin Chun,Yifeng Wen,Gang Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:219: 108836-108836 被引量:10
标识
DOI:10.1016/j.compag.2024.108836
摘要

A Multi-scale Feature Adaptive Fusion model (MFAF-YOLO) for real-time detection of citrus harvesting robots in complex field environments is proposed in this study. This proposed model improves detection accuracy while meeting the lightweight requirements of consumer-level cameras. In this study, different citrus fruit varieties, sourced from two distinct devices, are classified into 'First priority', 'Second priority', and unannotated citrus. This classification strategy guides robots in sequential picking in real-field scenarios, reducing detection redundancy and diminishing the damage rate at the robot end-effector. Additionally, multiple clustering algorithms were employed to adjust the anchor box sizes of the model. The impact of dual and triple detection heads on model accuracy across diverse clustering algorithms was also explored. An innovative multi-scale feature adaptive fusion module was embedded in the model's neck section, aiming to optimize model accuracy and reduce model size. In the dataset processed with multiple augmentation techniques, the novel MFAF-YOLO model achieved the mean Average Precision (mAP) of 90.2 %, reflecting an improvement of 3.8 % compared to the original YOLOv5s model, demonstrating superior generalization capabilities. Compared with seven other mainstream models, including YOLOv4 and MobileNet-YOLOv5s, the Average Precision (AP) value of 'First priority' and 'Second priority' is 93.2 % and 87.3 %, respectively, achieved the highest AP while maintaining a better detection speed. The model size of MFAF-YOLO is reduced to 10.4 MB, marking a 26.2 % decrease relative to the lightweight YOLOv5s model. Experimental results highlight the model's strong robustness and successful attainment of an effective balance between model accuracy and lightweight. This proposed model provides theoretical support for real-time picking and harvesting decision-making of citrus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理梦竹完成签到 ,获得积分10
25秒前
量子星尘发布了新的文献求助10
27秒前
123123完成签到 ,获得积分10
42秒前
魁梧的盼望完成签到 ,获得积分10
44秒前
123完成签到 ,获得积分10
49秒前
周冯雪完成签到 ,获得积分10
54秒前
小张完成签到 ,获得积分10
56秒前
小马甲应助舒适路人采纳,获得10
1分钟前
cc应助科研通管家采纳,获得10
1分钟前
1分钟前
云霞完成签到 ,获得积分10
1分钟前
xx发布了新的文献求助10
1分钟前
SciGPT应助开心寄松采纳,获得10
1分钟前
1分钟前
舒适路人发布了新的文献求助10
1分钟前
山猫大王完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
zero完成签到,获得积分10
1分钟前
1分钟前
1分钟前
610完成签到 ,获得积分10
1分钟前
平常馒头完成签到 ,获得积分10
1分钟前
深情安青应助yyy采纳,获得10
1分钟前
从容的从寒完成签到,获得积分10
2分钟前
2分钟前
思源应助从容的从寒采纳,获得10
2分钟前
2分钟前
无心的婴发布了新的文献求助10
2分钟前
2分钟前
Yx发布了新的文献求助10
2分钟前
beetes完成签到,获得积分10
2分钟前
婼汐应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
天天快乐应助科研通管家采纳,获得10
3分钟前
cc应助科研通管家采纳,获得10
3分钟前
充电宝应助科研通管家采纳,获得10
3分钟前
乐乐应助科研通管家采纳,获得10
3分钟前
李大刚完成签到 ,获得积分10
3分钟前
3分钟前
Yx完成签到,获得积分10
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960063
求助须知:如何正确求助?哪些是违规求助? 3506261
关于积分的说明 11128577
捐赠科研通 3238254
什么是DOI,文献DOI怎么找? 1789645
邀请新用户注册赠送积分活动 871829
科研通“疑难数据库(出版商)”最低求助积分说明 803056