Do macroprudential policies reduce risk spillovers between energy markets?: Evidence from time-frequency domain and mixed-frequency methods

经济 货币经济学 频域 计量经济学 宏观审慎监管 系统性风险 能量(信号处理) 宏观经济学 金融危机 计算机科学 统计 计算机视觉 数学
作者
Qichang Xie,Yu Bai,Nanfei Jia,Xin Xu
出处
期刊:Energy Economics [Elsevier]
卷期号:134: 107558-107558 被引量:1
标识
DOI:10.1016/j.eneco.2024.107558
摘要

Preventing volatility spillovers between energy markets is essential for maintaining financial stability. Macroprudential policies play an invaluable tool in financial risk monitoring and help to reduce the incidence of systemic risk. However, the effectiveness of macroprudential policies on risk spreads in the energy system is still unclear. This article applies the TVP-VAR (time-varying parameter vector autoregression) spillover methods to capture the risk connectedness between energy markets in the time and frequency domains, and constructs an asymmetric GARCH-MIDAS-MPP model to investigate the influence of macroprudential policies on volatility overflows of the energy system. The results suggest that there are strong risk links between global energy markets and long-term risk resonances play a dominant role. Time-varying risk overflows occur throughout the energy sector, and market turbulence amplifies these risk communications. Whether on a time or frequency horizon, the oil market represents the largest emitter of fluctuation transmissions, while the fuel oil market stands out as the biggest recipient of risk diffusion. We do not observe that macroprudential policies can significantly reduce the average and long-run risk premiums of the energy system. Conversely, our results reveal that macroprudential policies intensify short- and medium-term risk spreads between global energy markets. This paper provides some insight into energy market risk contagion, which is conducive to the improvement of macroprudential policies for energy market risk management.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿依咕噜完成签到,获得积分10
1秒前
善学以致用应助奥氏采纳,获得10
2秒前
圆圆的大脑完成签到,获得积分10
2秒前
科目三应助小tan采纳,获得10
2秒前
2秒前
慕青应助123131采纳,获得10
2秒前
科研通AI6.1应助呆萌宝莹采纳,获得10
3秒前
3秒前
风清扬发布了新的文献求助10
3秒前
3秒前
四夕水窖完成签到,获得积分10
3秒前
kei发布了新的文献求助10
4秒前
4秒前
5秒前
仁爱曼荷发布了新的文献求助10
6秒前
7秒前
7秒前
ZZ发布了新的文献求助20
8秒前
8秒前
8秒前
cc66发布了新的文献求助10
8秒前
宋JINGLEI完成签到,获得积分10
9秒前
9秒前
CodeCraft应助luckily采纳,获得10
9秒前
羊屎蛋完成签到 ,获得积分10
10秒前
10秒前
NIBABA完成签到,获得积分10
10秒前
SEAL完成签到,获得积分10
11秒前
11秒前
冷酷的松发布了新的文献求助10
11秒前
11秒前
xinzhao发布了新的文献求助10
12秒前
13秒前
14秒前
彭于晏发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
15秒前
15秒前
小仙女发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5735261
求助须知:如何正确求助?哪些是违规求助? 5359491
关于积分的说明 15329099
捐赠科研通 4879515
什么是DOI,文献DOI怎么找? 2622039
邀请新用户注册赠送积分活动 1571201
关于科研通互助平台的介绍 1528011