已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Study on Real-Time Water Demand Prediction of Winter Wheat–Summer Corn Based on Convolutional Neural Network–Informer Combined Modeling

卷积神经网络 冬小麦 环境科学 农业工程 农学 计算机科学 机器学习 工程类 生物
作者
Junxia Ma,Yijian Chen,Xiuping Hao,Bifeng Cui,Yang Jiang-shan
出处
期刊:Sustainability [MDPI AG]
卷期号:16 (9): 3699-3699
标识
DOI:10.3390/su16093699
摘要

The accurate prediction of crops’ water requirements is an important reference for real-time irrigation decisions on farmland. In order to achieve precise control of irrigation and improve irrigation water utilization, a real-time crop water requirement prediction model combining convolutional neural networks (CNNs) and the Informer model is presented in this paper, taking the real-time water demand of winter wheat–summer maize from 2017 to 2021 as the research object. The CNN model was used to extract the depth features of the day-by-day meteorological data of the crops, and the extracted feature values were inputted into the Informer model according to the time series for training and prediction to obtain the predicted water demand of winter wheat and summer maize. The results showed that the prediction accuracy of the constructed CNN–Informer combination model was higher compared to CNN, BP, and LSTM models, with an improvement of 1.2%, 25.1%, and 21.9% for winter wheat and 0.4%, 37.4%, and 20.3% for summer maize; based on the good performance of the model in capturing the long-term dependency relationship, the irrigation analysis using the model prediction data showed a significant water-saving effect compared with the traditional irrigation mode, with an average annual water saving of about 1004.3 m3/hm2, or 18.4%, which verified the validity of the model, and it can provide a basis for the prediction of crops’ water demand and sustainable agricultural development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沈业桥发布了新的文献求助10
1秒前
CUGjy完成签到,获得积分10
2秒前
小艾冂学完成签到,获得积分10
3秒前
3秒前
呀呀呀呀发布了新的文献求助10
3秒前
miao完成签到 ,获得积分10
6秒前
7秒前
拉长的夜玉完成签到 ,获得积分10
7秒前
11秒前
Milky完成签到,获得积分10
12秒前
12秒前
15秒前
Milky发布了新的文献求助10
19秒前
chiyudawang发布了新的文献求助10
19秒前
20秒前
风中曼彤发布了新的文献求助10
23秒前
沈业桥完成签到,获得积分10
25秒前
星辰大海应助新陈采纳,获得10
25秒前
31秒前
32秒前
33秒前
34秒前
34秒前
新陈完成签到,获得积分10
35秒前
新陈发布了新的文献求助10
37秒前
不配.应助糊涂的炳采纳,获得10
39秒前
jessica发布了新的文献求助10
39秒前
酷波er应助penguin777采纳,获得30
40秒前
搜集达人应助尊敬小馒头采纳,获得10
42秒前
43秒前
搜集达人应助科研通管家采纳,获得10
45秒前
qianzheng应助科研通管家采纳,获得10
45秒前
华仔应助科研通管家采纳,获得10
46秒前
CodeCraft应助科研通管家采纳,获得10
46秒前
46秒前
菠萝完成签到 ,获得积分10
53秒前
bkagyin应助silence采纳,获得10
53秒前
56秒前
nycmq07关注了科研通微信公众号
57秒前
1分钟前
高分求助中
求国内可以测试或购买Loschmidt cell(或相同原理器件)的机构信息 1000
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3219534
求助须知:如何正确求助?哪些是违规求助? 2868357
关于积分的说明 8160662
捐赠科研通 2535389
什么是DOI,文献DOI怎么找? 1367809
科研通“疑难数据库(出版商)”最低求助积分说明 645094
邀请新用户注册赠送积分活动 618441