Using Zipf’s Law to Optimize Urban Spatial Layouts in an Urban Agglomeration Area

齐普夫定律 经济地理学 集聚经济 城市群 地理 计算机科学 经济 经济增长 数学 统计
作者
Yifan Wang,Jianjun Lv,Xun Liang,Chuanhua Luo,Xiaonan Ma,Jiang Li,Qiang Li,Lina Zheng,Qingfeng Guan
出处
期刊:Annals of the American Association of Geographers [Informa]
卷期号:: 1-23
标识
DOI:10.1080/24694452.2024.2332647
摘要

The study of the land use optimization of urban agglomerations is of great significance to the rational utilization of land resources and the sustainable development of urban agglomerations. Previous studies have simply regarded the urban agglomeration as a whole area or each city as an isolated individual, without considering the regional coordinated development of urban agglomerations in land use optimization objectives. This study proposed the first attempt to couple Zipf's law and a multiobjective optimization model of land use in an urban agglomeration. Zipf's law was applied to quantify the coordinated development of urban agglomeration and use it as one of the objectives of land use optimization. The genetic algorithm was adopted to establish the optimization model, and different future development scenarios were designed for comparison. The Beijing–Tianjin–Hebei (BTH) urban agglomeration was selected as the study area, and the proposed model obtained effective results within an acceptable time. The Zipf's law–based optimization objective provided a more coordinated scale structure for urban growth and led the urban structure to develop toward the optimized state. There was a conflict, however, between the coordination and the other two objectives (compactness and suitability). Different stakeholders need to consider the trade-offs among these optimization objectives in urban planning. Finally, based on the optimization patterns of local areas, we suggest the following: Some large-scale cities (e.g., Beijing and Tianjin) should strictly control their new urban expansion or transfer part of their resources and population; Langfang and Xingtai should accelerate their development or take over part of the noncapital function of Beijing; and Zhangjiakou and Chengde should optimize their urban morphology and suitability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助kkuang采纳,获得10
1秒前
yii完成签到,获得积分10
1秒前
Orange应助110采纳,获得10
2秒前
平淡菲音完成签到 ,获得积分10
2秒前
Hello应助猫和老鼠采纳,获得10
3秒前
er发布了新的文献求助10
3秒前
草珊瑚发布了新的文献求助30
3秒前
4秒前
爱撒娇的刺猬完成签到,获得积分10
4秒前
慕青应助无聊的采纳,获得10
5秒前
zxm完成签到,获得积分10
5秒前
巧乐兹发布了新的文献求助10
5秒前
张子扬发布了新的文献求助10
7秒前
7秒前
8秒前
星辰大海应助贪玩手链采纳,获得10
8秒前
10秒前
11秒前
英勇宛筠发布了新的文献求助10
11秒前
张子扬完成签到,获得积分10
12秒前
12秒前
忧郁紫翠完成签到,获得积分10
13秒前
kkuang发布了新的文献求助10
15秒前
kalala发布了新的文献求助10
16秒前
17秒前
18秒前
pride应助mmyhn采纳,获得10
19秒前
丘比特应助害羞彩虹采纳,获得10
21秒前
海陵吹风鸡完成签到,获得积分10
21秒前
大模型应助包子采纳,获得10
22秒前
hh完成签到,获得积分10
24秒前
russing完成签到 ,获得积分10
25秒前
能干的丸子完成签到,获得积分10
26秒前
27秒前
kalala完成签到,获得积分10
28秒前
开朗猫咪关注了科研通微信公众号
28秒前
29秒前
32秒前
研友_VZG7GZ应助ziwei采纳,获得10
32秒前
研友_VZG7GZ应助青寻采纳,获得10
33秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125080
求助须知:如何正确求助?哪些是违规求助? 2775384
关于积分的说明 7726510
捐赠科研通 2430943
什么是DOI,文献DOI怎么找? 1291531
科研通“疑难数据库(出版商)”最低求助积分说明 622169
版权声明 600352